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A B S T R A C T   

In this paper, we present an in-depth analysis of the use of convolutional neural networks (CNN), a deep learning 
method widely applied in remote sensing-based studies in recent years, for burned area (BA) mapping combining 
radar and optical datasets acquired by Sentinel-1 and Sentinel-2 on-board sensors, respectively. Combining 
active and passive datasets into a seamless wall-to-wall cloud cover independent mapping algorithm significantly 
improves existing methods based on either sensor type. Five areas were used to determine the optimum model 
settings and sensors integration, whereas five additional ones were utilised to validate the results. The optimum 
CNN dimension and data normalisation were conditioned by the observed land cover class and data type (i.e., 
optical or radar). Increasing network complexity (i.e., number of hidden layers) only resulted in rising computing 
time without any accuracy enhancement when mapping BA. The use of an optimally defined CNN within a joint 
active/passive data combination allowed for (i) BA mapping with similar or slightly higher accuracy to those 
achieved in previous approaches based on Sentinel-1 (Dice coefficient, DC of 0.57) or Sentinel-2 (DC 0.7) only 
and (ii) wall-to-wall mapping by eliminating information gaps due to cloud cover, typically observed for optical- 
based algorithms.   

1. Introduction 

Fire is one of the natural disturbance processes that generates sig
nificant social and economic consequences (Bowman et al., 2020; 
Chuvieco et al., 2010) and modifies the terrestrial ecosystems by 
reducing biodiversity, changing water supply and liberating vegetated- 
sequestered carbon (Hansen et al., 2013; Aponte et al., 2016; Pausas 
and Paula, 2012; Lavorel et al., 2007). At global scale, emissions of 
aerosols and greenhouse gases (GHGs) from fires may modify the Earth’s 
biochemical cycles and the radiative energy balance (Van Der Werf 
et al., 2017; Bowman et al., 2009; Jin and Roy, 2005). Fire-induced 
carbon emissions have been estimated to be 2.2 PgC per year over the 
period 1997–2016 (Van Der Werf et al., 2017), which translates into 
20–30% of global emissions from burning fossils fuels, triggering the 
current global warming (Kloster et al., 2012; Flannigan et al., 2009). 
Besides, it is observed a direct relationship between the rising of Earth’s 
temperature and the severity of fires (Hoffmann et al., 2002; Knorr et al., 
2016). Given the global warming current context, such a relationship 
may reinforce the fire role progressively on climate change (Turco et al., 
2019; Williams and Abatzoglou, 2016; Flannigan et al., 2006; 

Langenfelds et al., 2002). However, fires may also result in opposite 
effects by enabling global cooling processes as a result of increased 
aerosols in the atmosphere, which induce negative radiative forcing 
(Ward et al., 2012). Such effects suggest a limited understanding of fire 
impact on global climate (Krawchuk et al., 2009; Liu et al., 2019). 

Due to its undeniable climatic and environmental importance, fire is 
considered by the Global Climate Observing System (GCOS) as an 
Essential Climatic Variable (ECV) (i.e., a physical, biological, chemical, 
or a group of connected variables capable of altering the climate system 
(Bojinski et al., 2014)). The European Space Agency (ESA), through the 
Climate Change Initiative (CCI) programme, is generating remote 
sensing-based ECVs to improve climate modelling (Plummer et al., 
2017; Hollmann et al., 2013). Fire has been included in the CCI pro
gramme since 2010 (Fire_cci project). Improving current BA products by 
developing new algorithms based on state-of-the-art Earth observation 
datasets as well as generating a long-term time series of global BA have 
been the main goals of the Fire_cci project (Chuvieco et al., 2018). One 
driving factor behind the project was the need for more accurate BA 
products that reduce current uncertainties when studying the fire- 
induced climate impacts (Mouillot et al., 2014; Poulter et al., 2015). 
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In particular, emissions from small-sized fires were of particular concern 
(Van Der Werf et al., 2017; Ramo et al., 2021). 

Many BA global products have been released over the past decade, 
mostly based on optical imagery acquired by the Moderate Resolution 
Imaging Spectroradiometer (MODIS), such as the MCD45 (Roy et al., 
2008), MCD64 (Giglio et al., 2009, 2018), Fire_cci v5.0 (Chuvieco et al., 
2018) and Fire_cci v5.1 (Lizundia-Loiola et al., 2020). However, such 
products have limitations as small-sized fires are difficult to detect due 
to the coarse pixel spacing (>250 m). Such limitations generate uncer
tainty about the extent of the global burned area (Chuvieco et al., 2019). 
In order to reduce BA mapping uncertainty, imagery acquired by me
dium spatial resolution optical sensors such as Landsat-8 and Sentinel-2 
are increasingly used to map BA at regional and global scales. Indeed, a 
recent study over sub-Sahara Africa based on Sentinel-2 images for 2016 
quantified an increase of 80% over existing global BA products 
(MCD64A1 product Version 6) for the same region and year (Roteta 
et al., 2019). In addition to problems observed when detecting small- 
sized fires, global BA products are also affected by cloud cover, which 
limits detection of burned pixels, particularly in Tropical regions where 
fire activity occurs over short time spans and the continuous cloud cover 
prevents BA mapping from optical sensors. In order to circumvent such 
limitations, active sensors (e.g., synthetic aperture radar – SAR) have 
been used as an alternative to optical imagery for mapping BA (Bour
geau-Chavez et al., 2002; French et al., 1999). The launch of ESA’s 
Sentinel-1 A and B in October 2014 and December 2015, respectively, 
have greatly improved the availability of SAR images, by operationally 
acquiring (i) dual-polarisation C-band imagery (i.e., vertical–vertical, 
VV, and vertical–horizontal, VH polarisations), while (ii) providing 
precise orbital information, (iii) allowing for viewing geometries more 
suitable for vegetation monitoring through increased incidence angle, 
and (iv) improving spatial and temporal resolution, as revisit period of 
Sentinel-1 mission is three days when combining ascending and 
descending passes from Sentinel-1 A and B. Such advances, coupled with 
a free data access policy, have allowed for the development of SAR- 
based BA mapping algorithms (Belenguer-Plomer et al., 2019c). 
Indeed, a first large-scale BA product based on Sentinel-1 datasets was 
released recently for the Amazon basin for the year 2017 (https://www. 
esa-fire-cci.org/, last accessed March 15th, 2020). 

Availability of near-concurrent active (Sentinel-1) and passive 
(Sentinel-2) datasets allows taking advantage of similar spatial and 
temporal resolutions of radar and optical information. Nevertheless, few 
studies have considered combining such sensors when mapping BA. In 
addition, there is little consensus regarding the benefits of such data 
combination. Some studies noted that active-passive data might reduce 
limitations associated with each data-source (Verhegghen et al., 2016). 
On the contrary, other studies suggest limited to nil benefits (Brown 
et al., 2018). The potential of radar-optical based approaches depends 
on several limiting factors depending on the sensor type. Optical sensors 
are severely restricted by cloud cover or strong variations in solar illu
mination (Bourgeau-Chavez et al., 2002; French et al., 1999). Limita
tions to using SAR for fire mapping include sensitivity of SAR 
backscatter to variations in soil moisture and steep topography (Belen
guer-Plomer et al., 2018, 2019a). Besides, BA detection and mapping 
accuracy from both types of sensors is affected by the land cover class 
(Tanase et al., 2020). Previous studies which investigated the potential 
of combining SAR-optical (SAR–O) for BA mapping did it only over 
relatively small study areas or single biomes, which reduced results 
validity (Verhegghen et al., 2016; Brown et al., 2018; Stroppiana et al., 
2015). Furthermore, the strengths and weaknesses of combining active 
and passive datasets within a single BA classification algorithm as 
opposed to a single sensor-based detection and post-detection fusion 
have only been superficially analysed. 

Deep learning methods have been widely applied, in recent years, in 
many remote sensing-based studies (Zhu et al., 2017). Among them, the 
convolutional neural networks (CNN) are being extensively used for 
classifying satellite images (Ma et al., 2019), although few studies 

address BA detection and mapping (Ban et al., 2020; Pinto et al., 2020). 
The present research has been motivated by the limited literature on 
CNN applied to BA mapping, and the need for a more profound under
standing of its strengths and limitations over existing classification ap
proaches, and particularly, the impact of different configurations on BA 
detection accuracy, as well as the relevance of the burned land cover, 
level of fire severity and water content variations of soil and vegetation 
when using SAR data on detection performance (Belenguer-Plomer 
et al., 2019c). This paper analyses the CNN potential for BA mapping 
when SAR and optical data are combined, considering a wide range of 
burning conditions. Data from Sentinel-1, Sentinel-2 and their combi
nation have been used to test different CNN configurations for detecting 
burned pixels. The analysis was carried out over distinct ecosystems and 
biomes with significant fire activity. The specific objectives of the study 
were to (i) determine the optimum CNN parameters (i.e., image 
dimensionality for feature extraction, data normalisation, and the 
number of hidden layers) for each input dataset (i.e., radar, optical and 
SAR–O) and land cover class, and (ii) to find the optimal active-passive 
combination approach for BA mapping. The optimal configuration was 
validated over independent study areas. 

2. Study areas and datasets 

Ten Military Grid Reference System (MGRS) tiles, distributed over 
most of the biomes frequently affected by fires, were used as study areas. 
These tiles covered a broad range of terrestrial ecoregions, land cover 
classes, fire intensity (radiative power) as well as soil moisture and 
precipitation patterns over the considered fire periods (Table 1). Notice 
that no site was selected within the boreal region since there were found 
too specific and not generalisable effects, such as the fire-induced 
permafrost layer melting which increases the soil moisture. (Bour
geau-Chavez et al., 2002; Kasischke et al., 1994). Thus, additional 
research focused on this biome must be carried out in future attempts. 
Five of the tiles (training tiles) were used to calibrate the algorithm, 
which included finding the optimum mapping configuration (i.e., CNN 
parameters and sensor combination). The remaining tiles (test tiles) 
were reserved for validating the results over independent sites, as well as 
checking the algorithm generalisation capability (Fig. 1). 

Ground range detected (GRD) C-band backscatter coefficient tem
poral series acquired by the Sentinel-1 A and B satellites using the 
interferometric wide (IW) swath mode were the source of radar infor
mation. Temporal series acquired by the MultiSpectral Instrument (MSI) 
on-board the Sentinel-2 A and B satellites were the source of optical 
information. Sentinel-1 and Sentinel-2 data were downloaded from 
Copernicus Open Access Hub. As ancillary data, the enhanced Shuttle 
Radar Topography Mission (STRM) Digital Elevation Model (DEM) at 
30 m pixel spacing was considered when pre-processing both SAR and 
optical datasets (see Section 3.1). Ancillary datasets such as land cover 
information as well as thermal anomalies due to active fires (i.e., hot
spots) were also used within the BA mapping algorithm. The land cover 
information was extracted from the ESA’s land cover CCI product for the 
year 2015 Land_Cover_cci, which uses the Land Cover Classification 
System (LCC) (Di Gregorio, 2005). The LCC legend was simplified to six 
landscapes (i.e., shrublands, grasslands, forests, crops, non-burnable and 
others, including the later transitional woodland-shrub and scle
rophyllous vegetation) as in our previous research study to simplify the 
BA mapping procedure (Belenguer-Plomer et al., 2019c). Hotspots from 
VIIRS (Visible Infrared Imaging Radiometer Suite) (Schroeder et al., 
2014) and MODIS (Giglio et al., 2016) sensors at 375 m and 1 km of 
spatial resolution, respectively, were downloaded from NASA’s Fire 
Information for Resource Management System (FIRMS). 

Reference fire perimeters were used to validate the BA products. The 
reference perimeters were derived from independent sensors (i.e., 
Landsat imagery) to avoid auto-correlation (Tanase et al., 2020). 
Landsat-8 BOA (bottom of atmosphere) reflectance images with cloud 
cover below 70% were downloaded from the United States geological 
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survey repository (USGS) for each tile. The extraction of the reference 
fire perimeters is explained in detail in Section 3.4 

3. Methods 

3.1. Sentinel-1 pre-processing 

Sentinel-1 GRD images were processed using the Orfeo ToolBox 
(OTB), an open-source software developed by the Centre National 
D’Etudes Spatiales (CNES), France (Inglada and Christophe, 2009). The 
processing chain has been utilised in previous studies (Belenguer-Plomer 
et al., 2019c,b; Ottinger et al., 2017; Bouvet et al., 2018) and when 
generating the FireCCIS1SA10 product, the first large-scale BA product 
from Sentinel-1 data for the Amazon basin. Sentinel-1 data processing 

may be divided into three steps: data-preparation, geocoding, and multi- 
temporal filtering (Fig. 2). Sentinel-1 data were calibrated radiometri
cally to gamma nought (γ0) via a lookup table obtained from the product 
metadata. The calibrated imagery was orthorectified using topograph
ical information from the SRTM DEM. Since ESA often provides Sentinel- 
1 images of the same relative orbit within distinct slices, images from the 
same orbit were mosaicked and then spatially trimmed to the co
ordinates of the MGRS tile. Lastly, the processed images of each orbit 
were temporally filtered (Quegan et al., 2000). All images were pro
cessed to the Sentinel-1 nominal resolution (20 m) and subsequently 
aggregated to 40 m to reduce speckle (Tanase and Belenguer-Plomer, 
2018; Belenguer-Plomer et al., 2020). 

BA mapping is an iterative process in which the fire-detection in
terval is delimited by the temporal gap between two consecutive data 

Table 1 
Terrestrial ecoregions (Olson et al., 2001), predominant land cover classes (from CCI1 land cover, 2015), mean fire radiative power (FRP, derived from VIIRS2 and 
MODIS3 thermal anomalies products), pre- and post-fire soil moisture (SM, from SMAP4 product), and accumulated precipitations (from CHRIPS5 product) for each 
MGRS tile. Notice that ± is referring to the standard deviation.  

MGRS Terrestrial ecoregion Predominant land covers FRP (MW) SM pre-fire (m3/m3) SM pos-fire (m3/m3) Rainfall (mm) 

10UEC Tcf F (76.7%), S (7.9%) and G (7.2%) 17.5±24.6 0.11±0.03 0.11±0.03 2.4 
10SEH Mfws G (24.59%), C (24.22%) and F (19.23%) 10.0± 4.51 0.1±0.03 0.17±0.03 4.79 
20LQQ TSTmbf F (93.8%), C (3.7%) and S (2.1%) 13.86±16.13 0.33±0.06 0.24±0.05 3.61 
20LQP TSTmbf F (93.1%), C (5.7%) and S (1.01%) 13.78±14.5 0.1±0.05 0.13±0.03 1.77 
29TNG Tbf S (36.1%), F (26.5%) and C (10.6%) 24.9±33.06 0.09±0.02 0.18±0.02 4.73 
29TNE Mfws S (45%), F (28.3%) and C (12.7%) 24.9±33.06 0.07±0.03 0.07±0.03 0.24 
33NTG TSTgss F (89.4%), S (10.1%) and O (0.06%) 9.03±7.37 0.23±0.04 0.09±0.03 91.2 
36NXP TSTgss S (52.7%), F (41.3%) and C (4.7%) 14.24±14.68 0.13±0.06 0.12±0.05 17.64 
50JML Mfws G (70.7%), S (12.9%) and F (9.7%) 13.03±13.69 0.11±0.02 0.07±0.01 146.63 
52LCH TSTgss S (72.5%), O (25.7%) and G (0.4%) 8.98±9.12 0.2±0.04 0.18±0.03 24.25 

Terrestrial ecoregion: Tcf - Temperate Coniferous Forests; Mfws - Mediterranean Forests, woodlands and scrubs; TSTmbf - Tropical and subtropical moist broadleaf 
forests; Tbf - Temperate broadleaf and mixed forests; TSTgss - Tropical and subtropical grasslands, savannas and shrublands. 
Land covers: F - Forests; S - Shrubs; G - Grasslands; C - Crops; O - Others. 
1CCI - Climate Change Initiative; 2 VIIRS - Visible Infrared Imaging Radiometer Suite; 3MODIS - Moderate Resolution Imaging Spectroradiometer; 4SMAP - Soil 
Moisture Active Passive; 5 CHIRPS - Climate Hazards Group InfraRed Precipitation with Station data. 

Fig. 1. Location of the military grid reference system tiles used for training and test.  
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Fig. 2. Data chain pre-processing of SAR images with Orfeo ToolBox (Belenguer-Plomer et al., 2019c).  
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acquisitions. For each fire-detection interval (t0), determined by two 
Sentinel-1 consecutive acquisition dates (t− 1 and t+1), the two most 
recent images acquired before t0 (i.e., pre-fire) and all images acquired 
up to 180 days after t0 (post-fire) were used as input for the CNN BA 
mapping algorithm. Both available polarisations (i.e., VV and VH) and 
their ratio (i.e., VH/VV) were considered for each SAR image sensing 
date. Notice that the log-ratio used in some SAR-based change detection 
studies was not included since it had lower relevance than simple SAR 
ratios when monitoring fire effects (Belenguer-Plomer et al., 2019a). 
The 180 days post-fire interval accounted for fire-induced temporal 
variation of the backscattering process that may occur at some point 
after a fire event due to temporal decorrelation Belenguer-Plomer et al. 
(2019b). 

3.2. Sentinel-2 pre-processing 

The ESA’s atmospheric correction algorithm, sen2cor (v.2.4.0), was 
used to derive Sentinel-2 surface reflectance images by correcting not 
only atmospheric but also topographic effects. The bi-cubic interpola
tion was subsequently used to resample the 20 m Sentinel-2 images to 
the pre-processed Sentinel-1 output pixel spacing of 40 m. Temporal 
composites of Sentinel-2 images were generated to reduce the number of 
cloud-affected pixels using images acquired by both satellites for the 
selected bands (i.e., B02, B03, B04, B05, B06, B07, B8a, B11 and B12). 
Given a fire-detection interval (t0), as determined by two consecutive 
acquisition dates of Sentinel-2 A and B (t− 1 and t+1), the sen2cor-based 
Scene Classification (SCL) was considered when generating the temporal 
composites for t− 1 and t+1. Pixels affected by clouds or shadows were 
gap-filled using data from Sentinel-2 imagery acquired at the closest 
date before t− 1 and past t+1, up to 30 days (Melchiorre and Boschetti, 
2018) (Fig. 3). 

Along with the surface reflectance for each of the two temporal 
composites (pre- and post-fire), the following indices were computed 
and fed into the CNN: (i) the Normalized Burn Ratio (García and Case
lles, 1991) (NBR, Eq. (1)), (ii) the Normalized Difference Water Index 
(Gao, 1996) (NDWI, Eq. (3)), (iii) the Normalized Difference Vegetation 
Index (Rouse Jr et al., 1974; Tucker, 1979) (NDVI, Eq. (2)) and the (iv) 
Mid InfraRed Burn Index (Trigg and Flasse, 2001) (MIRBI, Eq. (4)). 
These indices are part of the state-of-the-art of BA mapping from optical 
datasets (Roteta et al., 2019; Loboda et al., 2007; Fraser et al., 2000). 

NBR = (NIR-SWIR2)/(NIR+ SWIR2) (1)  

NDVI = (NIR-Red)/(NIR+Red) (2)  

NDWI = (NIR-SWIR1)/(NIR+ SWIR1) (3)  

MIRBI = 10× SWIR2 − 9.8× SWIR1 + 2 (4)  

where Red, NIR, SWIR1 and SWIR2 are the surface reflectances of bands 
4 (650–680 nm), 8a (785–899 nm), 11 (1565–1655 nm) and 12 
(2100–2280 nm) of MSI on-board Sentinel-2 satellites, respectively. 

3.3. SAR-optical data integration 

As Sentinel-1 and Sentinel-2 acquisition dates may not coincide 
when capturing images over the same geographical area, the Sentinel-1 
acquisition dates defined each fire-detection interval (t0) when jointly 
using SAR and optical data because of their complete spatial coverage (i. 
e., no missing pixels due to cloud cover). Then, Sentinel-2 images were 
matched to the Sentinel-1 dates for each detection period as follows 
when there was not any temporally coincident image: for the pre-fire 
date, the closest Sentinel-2 image acquired before was selected as t− 1 
date, whereas for the post-fire date, the closest image acquired after was 
selected as t+1 date. Once the Sentinel-2 images were matched with the 
Sentinel-1 detection interval, cloud-related gaps were filled through 
carrying out the temporal composite process (see Section 3.2). Subse
quently, the Sentinel-1 radar-derived images (i.e., VV, VH and VH/VV 
ratio) acquired on t− 1 and t+1, as well as the Sentinel-2 temporal com
posites (i.e., spectral bands and spectral-indices) were stacked and fed 
into the classification algorithm. Similar data combination approaches 
based on Sentinel-1 and Sentinel-2 had been previously used for vege
tation monitoring (Sharma et al., 2018; Tavares et al., 2019), also 
employing CNN (Scarpa et al., 2018). 

3.4. Reference burned perimeters and validation 

The reference fire perimeters were extracted from Landsat-8 surface 
reflectance. The extraction was based on the validation framework 
previously established for BA products (Padilla et al., 2014, 2015, 2017; 
Fernandez-Carrillo et al., 2018; Franquesa et al., 2020). A random for
ests classifier was trained using samples of burned, unburned and no 

Fig. 3. Graphical representation of temporal composite formation. The fire-detection interval (t0) is defined by the time span of two consecutive Sentinel-2 images, 
being dependent on the revisit period. 
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data pixels (i.e., clouds). These samples were selected through manual 
digitisation of polygons over a false colour composite (RGB: SWIR2, NIR, 
R) which provided an experienced user with a clear visual distinction 
between burned, unburned and no data pixels. Input data for the random 
forests classifier were (i) the band 5 (NIR; 0.85–0.88 μm) and band 7 
(SWIR2; 2.11–2.29 μm) of post-fire date, (ii) the NBR of post-fire (Eq. 
(1)) and (iii) the temporal difference between pre- and post-fire of NBR 
values (dNBR) from Landsat-8 images. Model-training and scene clas
sification was carried out iteratively, by including new training data in 
each iteration and re-running the classifier until the reference fire pe
rimeters were considered accurate at close-up visual inspection. 

Confusion matrices were used to validate the CNN-based BA maps 
(Table 2). The Dice coefficient (Eq. (5)) and the omission (Eq. (6)) and 
commission errors (Eq. (7)), which are widely used metrics when vali
dating BA products, were computed from the matrix to assess the quality 
of the maps (Padilla et al., 2015). 

DC = 2P11/(P1+ +P+1) (5)  

OE = P21/P+1 (6)  

CE = P12/P1+ (7)  

3.5. Burned area mapping experimental setup 

The BA mapping algorithm identifies changes in C-band backscatter 
and surface reflectance associated with burning events. BA mapping was 
carried out using (i) Sentinel-1 derived incoherent SAR-based metrics 
(see Section 3.1), (ii) Sentinel-2 surface optical reflectance (see Section 
3.2) and (iii) combining SAR and optical selected datasets (see Section 
3.3). Thus, up to three BA maps derived from different input datasets 
were generated for each detection period. Hotspots and land cover in
formation were used for algorithm training purposes (see Section 3.5.2). 

3.5.1. Convolutional neural networks (CNN) background 
Deep learning methods are increasingly applied to remote sensing 

problems (Zhu et al., 2017) with CNN being widely used in land cover 
classification, the retrieval of bio-geophysical variables (Ma et al., 2019) 
or BA detection and classification (Ban et al., 2020; Pinto et al., 2020). 
CNNs are structured by stages of convolution and pooling, followed by at 
least one fully connected layer (LeCun et al., 2015; Zhu et al., 2017). 
Each convolutional layer carries out a spatial-spectral feature extraction 
(Zhong et al., 2019), generating a set of filtered data where patterns such 
as edges are emphasised (Strigl et al., 2010). From the convoluted 
filtered data, each neuron takes a vector and applies an activation 
function of a weighted linear summation (Eq. (8)) (Maggiori et al., 
2016). 

a = f (wx+ b) (8)  

where a is the neuron output, w is the weight given to the vector x, b is 
the bias value, and f is the activation function which introduces non- 
linearity into the network and permits learning complex features from 
data (Agostinelli et al., 2014; Saha et al., 2019). The most common 
activation function in remote sensing applications is the rectified linear 
unit (ReLU) (Nair and Hinton, 2010), which activates values greater 
than zero, while it converts the remaining to zero (Eq. (10)). 

f (x) =
{

x, x ≥ 0
0, x < 0 (9) 

A loss function is used to quantify the errors when classifying a 
training vector data, comparing the CNN-based prediction with the label 
of such vector (Maggiori et al., 2016). The weights and biases of each 
neuron are adjusted using the backpropagation criterion during the 
network training, carrying out multiple iterations forward and back
ward (Anantrasirichai et al., 2019) to minimise the errors via gradient 
descent (Schmidhuber, 2015). The activated data is sub-sampled to 
reduce the tensor size, which increases the receptor field to the next 
convolutional layer of the network (Kellenberger et al., 2018; Strigl 
et al., 2010). The last layer of the network performs the classification 
instead of the feature extraction. Thus, a fully connected neural network 
is used. Usually, such a fully connected network is followed by a softmax 
layer, which models the input data to the probability of belonging to 
each considered class (Hu et al., 2015; Anantrasirichai et al., 2019; 
Zhang et al., 2018). 

3.5.2. Selection of training data 
CNN is a supervised learning method, and as such, it needs sample 

data (i.e., burned and unburned pixels) for training purposes. In this 
study, the training data extraction relied on hotspots and land cover 
information at each MGRS tile (100×100 km). Hence, a specific CNN 
model was built and trained for each fire-detection interval (t0) and land 
cover class at each tile, which limited the large variations in climate 
regimes, vegetation classes or phenological cycles. The use of hotspots, 
well established for BA mapping (Belenguer-Plomer et al., 2019c; Roteta 
et al., 2019), was essential, especially when using the radar-derived 
metrics to differentiate changes due to fires (Huang and Siegert, 
2006). In addition, processing pixels according to their land cover class 
allowed improving the patterns characterisation, which resulted in more 
accurate separation of burned and unburned areas when considering 
SAR, optical and both datasets (Belenguer-Plomer et al., 2018; Tanase 
et al., 2020). Therefore, CNNs training and the subsequent mapping 
process were carried out class-by-class, with the number of CNN models 
built depending on the land cover classes present in each study area. For 
a land cover class k, the training pixels of the burned category were 
selected within a spatial buffer determined as the double of the thermal 
sensor spatial resolution (Langner et al., 2007; Sitanggang et al., 2013). 
The unburned training pixels were those outside the hotspot buffer areas 
as well as from not burnable (e.g., water) land cover classes according to 
CCI land cover map reference. 

3.5.3. Assessment of optimum CNN configuration for BA mapping 
The architecture of the CNNs was based on AlexNet (Krizhevsky 

et al., 2012), and integrate hidden convolutional layers, the ReLU acti
vation function, max-pooling, fully-connected layers, dropout and soft
max classification. According to Bashiri and Geranmayeh (2011), the 
parameters of a CNN model, such as the number of layers, neurons and 
filters, have to be adjusted ad hoc for each dataset. Hence, up to eight 
different CNN-combinations by each input dataset were analysed to 
determine the optimal network for BA detection and mapping (Table 3). 

Table 2 
Confusion matrix scheme.   

Refererence data  

Detection Burned Unburned Row total 

Burned P11 P12 P1+

Unburned P21 P22 P2+

Col. total P+1 P+2 N  

Table 3 
The eight configurations assessed for each input dataset (S – simple, C – 
complex).  

CNN model Convolution dimension Data normalisation 

S 1D z-score 
S 1D [0, 1] 
S 2D z-score 
S 2D [0, 1] 
C 1D z-score 
C 1D [0, 1] 
C 2D z-score 
C 2D [0, 1]  
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Four architectures were analysed after combining two CNN-groups 
that differed in terms of (i) the number of hidden layers and filters, 
and (ii) the image domain where the convolutional feature extraction 
was executed (i.e., spatial or spectral). The first group included two CNN 
models with a different number of hidden layers and filters. The first 
model used two hidden layers with 32 and 64 filters, respectively, 
whereas the second model had a third additional hidden layer where 
128 filters were applied. Hereafter the models with two and three hid
den layers are referred to as the simple (S) and the complex (C), 
respectively. The second group involved two convolution-based filters 
for feature extraction. Given any pixel located at row i and column j of 
the input image X, the first filter implied a pixel-wise convolution over 
the spectral domain (1D). It was considered a three-pixels size kernel to 
extract features from the spectral information of the previously stacked 
optical images and radar channels (see Section 3.1 to Section 3.3). The 
second filter considered a 3×3 kernel around the centre pixel (spatial 
domain, 2D) to extract the features used for BA detection (Kussul et al., 
2017; Xu et al., 2017; Zhang et al., 2019) (Fig. 4). 

Two normalisation methods were tested separately with each image 
band being normalised (i) in the interval [0, 1] (Benedetti et al., 2018) 
(Eq. 10) and (ii) applying the z-score normalisation (Zhong et al., 2017) 
(Eq. 11). 

interval [0, 1](x) =
x

max(b)
(10)  

z − score(x) =
x − μ(b)

σ(b) (11)  

where x is a given pixel of a band b of the image, and μ and σ are the 
mean and standard deviation, respectively. Table 3 shows the eight 
configurations for BA mapping performance assessment. 

4. Results 

4.1. Optimum CNN configuration 

Depending on the MGRS tile, the optimum CNN configuration varied 
(Fig. 5). When Sentinel-1 (S-1) data were fed into the CNN, accuracy 
metrics dispersion (i.e., between tiles) at any CNN configuration was 
higher when compared to feeding Sentinel-2 (S-2) data or both Sentinel- 
1 and Sentinel-2 data (S-1 + S-2). The inter-tiles accuracy dispersion of 
the radar-fed CNN was lower when carrying out the convolution-based 
feature extraction through the spatial domain of the image (2D), 
which decreased omission errors (36NXP, 20LQQ and 50JML) despite a 
slight increase in commission errors for some tiles (10UEC and 29TNE). 
Similar results were achieved when feeding the CNN model using 
Sentinel-2 data only. Contrarily, when feeding both types of data (i.e., S- 
1 + S-2) into the CNN, the convolution dimension (i.e., 1D or 2D) did not 
influence the accuracy. In addition, the time required when training 2D 
models was lower compared to 1D, particularly when considering 
complex (C) networks, regardless of the data normalisation type. The 
use of more complex (C) CNN models, instead of using the simplest ones 

(S), did not increase the accuracy without regard to the type of data fed 
into the network. Similarly, training times were not influenced by the 
data normalisation method (z-score vs [0, 1]). However, a marginal 
enhancement of mapping accuracy was observed when using the z-score 
normalisation for the Sentinel-1 fed CNN, particularly in tile 50JML (i.e., 
Australian grasslands), where OE was reduced significantly (for 2D 
CNN). Conversely, when feeding Sentinel-2 or Sentinel-1 and Sentinel-2 
data, the [0, 1] normalisation provided slightly more accurate BA 
detection rates. 

By land cover classes, the lowest BA mapping accuracy was observed 
over Grasslands, particularly when using Sentinel-1 data due to high OE 
(Fig. 6). However, combining 2D convolution with z-score normalisation 
resulted in improved DC (by 59%) from 1D convolution-based ap
proaches with z-score (DC 0.35±0.24 vs 0.22±0.2, mean ± the standard 
deviation). The same configuration (2D and z-score) also improved the 
accuracy over Crops, especially when compared to 1D with [0, 1] data 
normalisation (DC 0.37±0.14 vs 0.30±0.25), although to a lesser extent, 
while over Forests the improvement was marginal. Accuracy metrics 
were stable for Shrubs over all the configurations tested, although the 
2D and z-score configuration provided less overall dispersion among the 
analysed tiles. In the Others class, the highest mapping accuracy based 
on Sentinel-1 data was achieved using the convolution in the spectral 
domain (1D). 

Although Sentinel-2 fed CNN achieved higher accuracy when 
compared to Sentinel-1 fed one, such an improvement was conditioned 
by land cover classes and configurations. When using optical data, the 
spectral-based feature extraction (1D) was the most appropriate except 
for Crops, where the spatial-based (2D) improved the results. Besides, 
marginal differences in BA accuracy were found between the two data 
normalisation types, with the z-score normalisation providing higher DC 
values over all land cover classes, except for Forests. 

When not only Sentinel-1 but also Sentinel-2 data were fed to the 
CNN, the BA classification did not improve (except for Crops) in com
parison to only using Sentinel-2 data, despite requiring more computa
tion time in all configurations. Over cropping areas, SAR or optical data 
alone provided a low mapping accuracy (highest DCs achieved 
0.37±0.14 and 0.42±0.05, respectively). However, the SAR-O combi
nation improved the accuracy (DC 0.44±0.09) by reducing the OE. Such 
an improvement was maximum for the 2D convolution and z-score 
normalisation. For the remaining land cover classes, the SAR and optical 
combination did not improve the results when cloud cover was not an 
issue. Despite Sentinel-2 temporal compositing, gaps remained over 
areas frequently affected by clouds. As for the CNN optimum configu
ration, 1D convolution and [0, 1] normalisation improved the mapping 
accuracy (as for the Sentinel-1 based network). The highest mapping 
accuracy was observed over Forests regardless of the data normalisation 
method, convolution dimension and input remote sensing data (i.e., S-1, 
S-2, S-1 + S-2). The optimum CNN configuration for each land cover 
class is presented in Table 4 as a function of the input remote sensing 
data. 

The softmax layer (i.e., the last layer of the CNN) predicted the 
probability that each pixel would have been burned or unburned. 

Fig. 4. Feature extraction carried out in a convolution (Conv) through (a) the spectral-domain (1D) and (b) the spatial-domain (2D) of the input image. Relevant 
parts of CNN such as ReLU, max-pooling, fully-connected network and softmax layers are also shown. 
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Although in our previous analysis, pixels were classified as burned when 
such a probability was equal to or above 50%, such a fixed threshold, 
based on a statistical proxy instead of on the data analysis, may not 
provide the optimum performance. Hence, we analysed the use of a 
variable probability threshold to improve the BA mapping accuracy, 
balancing CE and OE (Fig. 7). Such variation depended on the land cover 
class and the input data fed to the CNN (Table 5). Over Grasslands, Crops 
and Shrubs (i.e., the classes with the highest OE (Fig. 6)) accuracies 
improved when the softmax burned probability threshold was reduced 
(40 to 50%), although it depended on the input data. Conversely, for the 
Forests class, a more restrictive threshold improved the classification. 
The optimum threshold differed with the input data, from 65% when 
using Sentinel-2 data alone to 75% when using Sentinel-1 or integrating 
SAR and optical data. BA accuracy improved marginally for the Others 
class when varying the threshold until a probability of 80% for Sentinel- 
1 and 70% for Sentinel-2. However, when integrating SAR and optical 
data, the improvement was considerable for the 55–75% interval, with 
the highest accuracy achieved for a softmax threshold of 70%. Such an 
improvement allowed that maps based on SAR-O integration had higher 
accuracy when compared to those derived from individual Sentinel-1 or 

Sentinel-2 datasets. Past the optimum threshold, mapping accuracy 
reduced considerably, especially when using Sentinel-2 data. This effect 
was observed for all land cover classes except for Grasslands. 

4.2. SAR-optical mapping strategy 

Three different BA mapping strategies when combining SAR and 
optical datasets were analysed: (i) stacking radar as well as optical data 
(i.e., backscatter coefficient, optical surface reflectances and spectral 
indices) and feeding them to the CNN (Fig. 8, a), (ii) using BA detected 
from the optical data and filling the cloud cover-induced gaps with 
pixels mapped from radar data (Fig. 8, b) and (iii) joining the BA 
detected independently from radar and optical datasets (Fig. 8, c). For 
the Forests class, the three mapping strategies provided similar results (i. 
e., DC values). However, joining individual Sentinel-1 and Sentinel-2 
maps may provide an advantage by reducing missed burned pixels due 
to clouds or shadows, not possible when using optical temporal com
posites alone. For Shrubs, the observed DC values were similar for all 
mapping strategies, with radar-filled optical-based BA maps showing 
slightly higher DC values when compared to the remaining two 

Fig. 5. Dice coefficient (DC), commission and omission errors (CE and OE) and seconds needed when training the models by training tiles considering different CNN 
configuration and input data (Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1 + S-2). 
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strategies. Over Grasslands, the radar-filled optical-based BA maps 
provided the most accurate results. Over the two remaining land cover 
classes (i.e., Others and Crops), using radar-optical stacked data into the 
CNN allowed improving the accuracy. In particular, over the Others 
class, the radar-optical stacks allowed reducing the CE by 20%. 

4.3. Burned area mapping validation 

The optimum CNN configuration and mapping strategy, according to 
the observed trends over the training tiles, were assessed over the test 
tiles (Table 6) with the mapping accuracy varying depending on the 
input data (i.e., S-1, S-2 and S-1 + S-2). Higher mapping errors (DC<0.6) 
were observed over grasslands dominated tiles in Africa and Australia 
(33NTG and 52LCH, respectively), regardless of the input data. Over the 
remaining tiles, DC values were above 0.7. Over two tiles (20LQP and 
33NTG), the radar-based maps were more accurate when compared to 
the optical-based (DC of 0.81 vs 0.71 and 0.50 vs 0.47, respectively) 
with the opposite being valid for the remaining three tiles. However, the 
use of Sentinel-1 data (i.e., cloud cover independent) allowed for wall- 
to-wall mapping. In tile 52LCH the optical-based maps did not provide 
information for 17.6% (Fig. 9). 

By land cover type, the highest accuracy was observed over forested 
areas when mapping BA through the SAR-O combination (DC 0.72) as 
opposed to only using SAR (DC 0.63) or optical (DC 0.66) information 
(Fig. 10). The most relevant improvement when combining Sentinel-1 
and Sentinel-2 was found over the Others class, where the synergy of 
both sensors reduced OE and CE considerably. The lowest accuracy was 
achieved over the Crops class, mainly due to high CE (near 0.8) observed 
for both sensor types. In addition, for the radar-based maps, BA accuracy 

Fig. 6. Mean and standard error of Dice coefficient (DC), commission and omission errors (CE and OE) and seconds per pixel needed when training the models by 
land cover classes (O-others, F-forests, S-shrubs, G-grasslands and C-crops) of training tiles considering different CNN configuration and input datasets (Sentinel-1 - S- 
1, Sentinel-2 - S-2 and both datasets - S-1 + S-2). 

Table 4 
Optimum CNN configuration and Dice coefficient mean (± standard deviation) 
by land cover classes (O-others, F-forests, S-shrubs, G-grasslands and C-crops) of 
the training tiles and input datasets (Sentinel-1 - S-1, Sentinel-2 - S-2 and both 
datasets - S-1 + S-2).  

LC S-1 DC (S-1) S-2 DC (S-2) S-1+S-2 DC (S-1+S- 
2) 

O 1D ∣ z- 
score 

0.46±0.31 1D ∣ z- 
score 

0.50±0.31 1D ∣ [0, 
1] 

0.42±0.38 

F 2D ∣ z- 
score 

0.60±0.23 1D ∣ [0, 
1] 

0.64±0.21 1D ∣ [0, 
1] 

0.58±0.24 

S 2D ∣ z- 
score 

0.50±0.23 1D ∣ z- 
score 

0.56±0.22 1D ∣ [0, 
1] 

0.53±0.20 

G 2D ∣ z- 
score 

0.35±0.24 1D ∣ z- 
score 

0.38±0.20 all 0.31±0.23 

C 2D ∣ z- 
score 

0.37±0.15 2D ∣ z- 
score 

0.43±0.19 2D ∣ z- 
score 

0.44±0.11  
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over cropping areas was also negatively influenced by high OE, which 
did not occur when using optical datasets. The combination of Sentinel-1 
and Sentinel-2 data generally improved or maintained the accuracy 
achieved from individual datasets except for tile 20LQP, where the SAR- 
based maps were the most accurate. When combining the two sensor 

types, we observed a considerable reduction in OE which coupled with a 
marginal increase in CE. The average OE reduction and CE increment 
over the five test tiles was 0.22±0.22 and 0.05±0.17 as well as 
0.09±0.08 and 0.05±0.05 when compared to radar- and optical-based 
maps, respectively. Apart from accuracy improvements, SAR-O data 
integration reduced gaps due to cloud cover to nil, a significant 
advantage of combining active and passive sensors. 

5. Discussion 

5.1. Optimum CNN parameters 

Optimum CNN parameters were proposed based on the five training 
tiles and applied to the test tiles (Fig. 1). The training-test tiles are 
geographically distributed and exhibit considerable differences in land 
cover distribution, FRP and soil moisture that might affect BA mapping 
accuracy (Table 1). Nevertheless, no significant variations were 
observed between the BA mapping accuracies achieved over the training 
and test tiles. It may be explained by the use of local CNN training, which 

Fig. 7. Variation of mapping accuracy measured through the mean and standard error of Dice coefficient (DC) as a function of changes in softmax probability by land 
cover classes of training tiles and input datasets (Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1 + S-2). 

Table 5 
Most suitable burned thresholds (Bt) of softmax classification probability layer 
when mapping burned area (BA) and the mean Dice coefficient (± standard 
deviation) by land cover classes (O-others, F-forests, S-shrubs, G-grasslands and 
C-crops) of training tiles and input datasets (Sentinel-1 - S-1, Sentinel-2 - S-2 and 
both datasets - S-1 + S-2).  

LC Bt (S- 
1) 

DC (S-1) Bt (S- 
2) 

DC (S-2) Bt (S-1+S- 
2) 

DC (S-1+S- 
2) 

O 0.75 0.47±0.32 0.70 0.52±0.35 0.70 0.55±0.36 
F 0.75 0.65±0.17 0.65 0.68±0.20 0.75 0.65±0.15 
S 0.55 0.50±0.24 0.50 0.56±0.22 0.45 0.53±0.19 
G 0.50 0.35±0.24 0.45 0.41±0.20 0.40 0.31±0.25 
C 0.45 0.37±0.13 0.50 0.43±0.19 0.50 0.44±0.11  

Fig. 8. Mean and standard error of Dice coefficient (DC) and commission and omission errors (CE and OE) by land cover classes (O-others, F-forests, S-shrubs, G- 
grasslands and C-crops) of training tiles when combining Sentinel-1 and Sentinel-2 data applying three different approaches: (a) data stacking of SAR and optical 
images to feed the CNN; (b) filling Sentinel-2 based maps pixels with information-gaps using those derived from Sentinel-1; and (c) joining all burned pixels detected 
using both SAR and optical images separately. 
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provided a representative set of optimum parameters. 
Our results show that the optimum data normalisation was based on 

the z-score when using either radar or optical data as input. The only 
exception was for forested areas mapped from Sentinel-2 imagery, 
which aligns with findings from previous research (Zhong et al., 2017). 
Conversely, when using a combined SAR-O dataset, the [0, 1] normal
isation was better suited for mapping applications, as also observed in 
previous studies that combined imagery from these sensors (Benedetti 
et al., 2018a). The [0, 1] normalisation provided more accurate BA 

detections when stacking SAR and optical datasets except for Grasslands 
(no difference with z-score normalisation) and Crops. For Grasslands, 
the insensitivity to the normalisation method may be related to the low 
BA mapping accuracies. On the other hand, for Crops, the intrinsic class 
vegetation differences given by the variability of different agricultural 
fields as well as the vegetation season may explain the need for a 
different normalisation type. 

The optimum feature extraction was achieved via the spectral 
domain (1D) when the optical or the SAR-O combination was used. 

Table 6 
Error metrics for burned area (BA) maps based on Sentinel-1 (S-1), Sentinel-2 (S-2) and the optimum combination of both datasets (S-1 + S-2) for each test tile.  

MGRS C Reference period Sat Detection period DC OE CE %Nd 

10SEH NA 04/10/2017–05/11/2017 S-1 28/09/2017–03/11/2017 0.46 0.69 0.13 0.00 
S-2 07/10/2017–01/11/2017 0.70 0.12 0.41 2.26 
S-1 + S-2 28/09/2017–03/11/2017 0.70 0.10 0.43 0.00 

20LQP SA 20/07/2016–22/09/2016 S-1 03/07/2016–25/09/2016 0.81 0.08 0.27 0.00 
S-2 17/07/2016–25/09/2016 0.71 0.20 0.37 0.00 
S-1 + S-2 03/07/2016–25/09/2016 0.73 0.04 0.41 0.00 

29TNG Eu 05/10/2017–06/11/2017 S-1 28/09/2017–09/11/2017 0.64 0.44 0.25 0.00 
S-2 05/10/2017–09/11/2017 0.75 0.27 0.22 0.06 
S-1 + S-2 28/09/2017–09/11/2017 0.77 0.23 0.22 0.00 

33NTG Af 15/01/2016–16/02/2016 S-1 15/01/2016–20/02/2016 0.50 0.53 0.47 0.00 
S-2 18/01/2016− /17/02/2016 0.47 0.65 0.31 0.39 
S-1 + S-2 15/01/2016–20/02/2016 0.56 0.47 0.42 0.00 

52LCH Au 05/04/2017–21/04/2017 S-1 26/03/2017–19/04/2017 0.36 0.75 0.34 0.00 
S-2 19/03/2017–08/04/2017 0.55 0.59 0.15 17.6 
S-1 + S-2 26/03/2017–19/04/2017 0.56 0.55 0.24 0.00 

C - continent for each tile (Af-Africa, Au-Australia, Eu-Europe, NA-North America and SA-South America); Reference period - period for which it was derived the 
reference burned perimeters using Landsat-8; Sat - input dataset considered; Detection period - first and last Sentinel-1 or Sentinel-2 images of the temporal series; DC - 
Dice coefficient; OE - omission error; CE - commission error; and %Nd - the percentage of no data pixels over all the MGRS tile. 

Fig. 9. Burned area (BA) maps based on Sentinel-1 (S-1), Sentinel-2 (S-2) and the optimum combination of both datasets (S-1 + S-2) for the test tiles. Errors of 
omission and commission, as well as no data pixels due to reference or input datasets are also shown. 
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Conversely, the spatial domain (2D) provided more accurate results 
when using SAR data alone. Such a difference may be due to optical 
reflectances allowing mapping BA better than the radar backscatter 
coefficient data (Belenguer-Plomer et al., 2019c). Hence, only consid
ering the spectral reflectances of those wavelengths highly sensitive to 
fire effects results in accurate classification of BA. However, when only 
the backscatter coefficient is available, considering the surrounding 
pixels improves the differentiation between burned and unburned, 
which explains the improved performance of the spatial feature 
extraction. 

The optimum Softmax threshold, when distinguishing between 
burned and unburned pixels, differed as a function of land cover classes. 
The most considerable enhancement, when varying the threshold from 
50% was observed for the Others class, which was mapped more accu
rately when considering SAR-O using a 60% probability threshold. The 
optimum thresholds also varied as a function of the input data (SAR, 
optical or SAR-O combination) over each land cover class. For Crops, 
Grasslands and Shrubs, the optimum thresholds were less restrictive (i. 
e., close to 50%), while for Forests and Others classes, the optimum ones 
were more restrictive (i.e., around 70%). Except for Shrubs, a higher 
threshold (for BA detection) seemed appropriate for the land cover 
classes mapped with higher accuracy (i.e., Forests and Others). These 
thresholds have been defined considering a reduced number of study 
areas so that further research is needed to confirm them. Nevertheless, 
the broad range of terrestrial ecoregions, land cover classes, fire radia
tive power as well as soil moisture and precipitation patterns observed 
over the training sites (Table 1) suggest their utility over a wide array of 
conditions and their transferability to other areas. The higher mapping 
accuracy may be related to the biomass level of each land cover class as 
it influences the level of pre- to post-fire changes for both, the back
scatter coefficient and optical reflectance. In addition, the Fire Radiative 
Power (FRP) is dependent on fuels availability (i.e., biomass) which 
implies that in land cover classes with a reduced amount of biomass, the 
capability to detect hotspots from thermal sensors is lower when 
compared to land cover classes with a higher quantity of biomass 
(Wooster et al., 2005). CNN models are land cover dependent and 
trained using information derived from hotspots. Hence, a reduced 

number of hotspots for a specific land cover class (e.g., due to low FRP or 
related to low biomass levels) resulted in suboptimal training, and as 
such, increased the uncertainty when compared to land cover classes 
with higher fuel availability, and consequently hotspots, which indeed 
explains the different optimum thresholds for each land cover class. 

Lastly, in terms of computing time, mapping the BA over a vegetation 
class with considerable intrinsic heterogeneity (i.e., Others class) 
increased the computing duration. However, the most significant time 
increment was found when using additional hidden layers which did not 
translate into mapping accuracy improvements. Although including 
more hidden layers does not deteriorate the mapping accuracy, the 
considerable increase of computing time may hinder algorithm 
deployment from continental to global scales, the final objective of this 
research (Chuvieco et al., 2019). 

5.2. SAR and optical data integration for BA mapping 

The input data (SAR, optical, joint use) providing the highest accu
racy differed with the land cover class. For Others and Crops classes, the 
joint use of active and passive data provided the most accurate results. 
As these land cover classes are more heterogeneous, the mapping pro
cess takes advantage of the different sensitivity of the two types of 
sensors through the CNN training, allowing for a more precise separa
tion between burned and unburned areas overall. Notice that over the 
test tiles, the joint use of both sensor types did not improve results for the 
Crops class, which suggests that further research is needed to ascertain 
the optimum combination of active and passive datasets. A possible 
explanation is a reduced variability among the types of crops within the 
test tiles. Such reduced variability was suggested by the reduced VH 
backscatter coefficient variability (i.e., standard deviation), related to 
the vegetation volumetric scattering process (Freeman and Durden, 
1998), over the Crops in the test tiles when compared to the training 
ones (0.10 vs 0.15). Increased homogeneity over the agricultural fields, 
induced by different crop types and/or growing seasons, may reduce the 
need for SAR-derived information for monitoring purposes (Van Tricht 
et al., 2018). Nevertheless, comparing SAR-O and optical-based results 
over the test tiles suggest only marginal DC differences over cropping 

Fig. 10. Mean and standard error of Dice coefficient (DC), commission and omission errors (CE and OE) by land cover classes of test tiles as a function of the input 
datasets used (Sentinel-1 - S-1, Sentinel-2 - S-2 and the optimum combination of both datasets - S-1 + S-2). 
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areas and demonstrates the reliability of the CNN-based predictions, 
even when some of the input data are redundant. 

For Forests and Shrubs classes, the combination of BA mapping 
products based on either individual SAR or optical data sources allowed 
for more accurate detections; however, such improvements were mar
ginal, especially for Shrubs, when compared to the remaining data- 
integration strategies. The improvement resulted from a considerable 
OE reduction when joining the independently generated maps. In 
particular, OE was reduced for pixels located at the border of fire patches 
which are more susceptible to be misclassified due to residual pixel co- 
registration errors between maps and validation datasets (Mandanici 
and Bitelli, 2016). Hence, combining maps obtained from sensors with 
different viewing geometries (i.e., SAR and optical) reduced the geo
location error effect without meaningfully increasing the CE. Lastly, 
over Grasslands, the use of Sentinel-2 data for BA mapping and Sentinel- 
1 for cloud-induced gap-filling provided the most accurate results. Such 
findings align with previous research which suggested reduced utility of 
C-band backscatter coefficient when monitoring fire effects in fire- 
affected grasslands (Menges et al., 2004). 

5.3. Algorithm independent validation 

The joint use of Sentinel-1 and Sentinel-2 data improved slightly or at 
least maintained the BA accuracy achieved using a sole input data (i.e., 
SAR or optical) in most test tiles while providing wall-to-wall mapping 
capabilities (i.e., all pixels were mapped), a feature particularly crucial 
in tile 52LCH, were cloud-induced gaps amounted to 17.6% of the area. 
Further, the joint use of active and passive datasets allowed combining 
the strengths of SAR (i.e., a cloud cover independence) and optical data 
(i.e., better sensitivity to fire-induced changes in vegetation) as also 
suggested in previous studies (Verhegghen et al., 2016). As an exception, 
for tile 20LQP, the highest accuracy was obtained using the SAR data 
(DC 0.81). The OE increased by 0.2 when using Sentinel-2 data as an 
input and by 0.04 when jointly using the active and passive datasets. 
However, for the latter, the CE significantly increased when joining all 
burned pixel detected separately from SAR and optical datasets due to 
the large commission errors of the Sentinel-2 based maps. The 
discrepant results in tile 20LQP were explained by fire location, as 83% 
of the fire patches burned forested areas and did not reflect the general 
trends as discussed in Section 5.4. Overall, using SAR and optical data 
for BA mapping requires more computing power or increased processing 
time. However, such an effort may be worth it whether end-users are 
provided with the most accurate BA products without information gaps, 
particularly beneficial at inter-tropical latitudes. 

By land cover classes, the higher mapping accuracies were observed 
for Forests, Shrubs and Grasslands with DC values of 0.72, 0.65 and 
0.57, respectively. A lower DC value (0.46) was observed for the Others 
class whereas a rather low mapping accuracy was observed for Crops 
(DC 0.27) regardless of the input datasets. However, one should notice 
that most accuracy metrics were based on reference fire perimeters over 
short periods (i.e., one month or less), which may significantly affect 
accuracy assessment. According to previous research, evaluating BA 
maps over short periods tends to underestimate mapping accuracy 
regardless of the input datasets (Padilla et al., 2018). Such effects were 
also found when assessing Sentinel-2 based BA maps with DC values 
increasing from 0.34 to 0.77 from short to long temporal periods (Roteta 
et al., 2019). 

In this study, most of the evaluated periods were short. However, two 
clearly defined groups of tiles were observed when analysing the BA 
mapping accuracy from Sentinel-2 data. For the first group, formed by 
tiles 10SEH, 20LQP and 29TNG, the fire activity was concentrated 
around dates timely covered by both the reference (as set by Landsat 8 
acquisition dates) and the detection period (set by the Sentinel-2 
acquisition dates). Over these tiles, the DC values were similar (DC 
>0.7) and in line with those observed in previous studies (Roteta et al., 
2019). For the second group, tiles 33NTG and 52LCH, many fires were 

active during dates not simultaneously covered by Landsat-8 and 
Sentinel-2 acquisitions. In fact, 8.8% (33NTG) and 39.4% (52LCH) 
hotspots were recorded within the interval covered by the Lansat-8 
imagery (16 days revisit period) but outside the interval covered by 
the Sentinel-2 ones (5 days revisit period). Such a mismatching may 
explain the increased OE (0.65 and 0.59, respectively) and thus the 
lower accuracy as the average DC was lower (0.21) when compared to 
the remaining tiles (DC 0.51 vs 0.72). 

The accuracy observed for the Sentinel-1 based BA maps was similar 
to that observed in previous studies based on the same sensor (Belen
guer-Plomer et al., 2019c). For the test tiles, the CNN-based maps ach
ieved an average DC of 0.55±0.17 while the Reed-Xiaoli detector-based 
approach proposed by Belenguer-Plomer et al. (2019c) achieved 
0.57±0.18. Although only marginal differences, in terms of accuracy, 
were found between the two approaches, the CNN-based algorithm was 
considerable faster (Belenguer-Plomer et al., 2019c). Regarding the 
combination of active/passive derived data, the reduced number of 
studies that took advantage of such a fusion when mapping BA mapping 
precluded meaningful comparisons as such studies were carried out over 
homogeneous areas with little variations in vegetation types and fire 
regimes (Verhegghen et al., 2016; Brown et al., 2018; Stroppiana et al., 
2015). 

5.4. Main sources of error 

BA mapping commission and omission errors depended, to a large 
degree, on the input data source. SAR and optical datasets were affected 
differently by factors including variations in soil moisture, slope orien
tation and post-fire vegetation response (Kurum, 2015; Belenguer- 
Plomer et al., 2019a). For tile 10SEH (North America), the main limiting 
factor when using SAR data was the steep topography since fire patches 
were located on steeper slopes (13.46◦±7.7) when compared to the 
remaining test tiles (7.15◦±6). The steep topography may reduce the 
backscatter suitability when monitoring fires, which translates into 
increased OE (0.69) (Belenguer-Plomer et al., 2019c). Conversely, 
considerable CE (0.41) was observed for the optical-based maps as 
during the automatic training low-fire severity pixels (i.e., reduced pre- 
to post-fire variations) were considered due to their distance to hotspots. 
However, the reference perimeters only included visible burned pixels 
since their generation was based on a manually supervised classifica
tion. The mean dNBR, a reliable indicator of fire severity (Key and 
Benson, 2004), in pixels affected by CE was 0.15±0.16, a value 
considerably higher when compared to that of unburned pixels 
(0.01±0.7) and, at the same time, far from the values observed for the 
accurately mapped burned pixels (0.46±0.26). Hence, it is thought that 
had the reference perimeters included partially burned pixels as burned, 
the CE would have been lower. 

Fire severity was also the main limiting factor in tiles 33NTG (Africa) 
and 52LCH (Australia). According to the MIRBI spectral index (Eq. (4)), 
found as the most suitable index when assessing fire severity over 
grasslands (Lu et al., 2016), low fire severity was observed for pixels 
affected by OE (1.67±0.38 and 1.62±0.21, respectively). In contrast, 
moderate severities were noticed for accurately detected burned pixels 
(1.8±0.32 and 1.76±0.12, respectively). Although marginal differences 
were found when comparing accuracies from SAR-O and optical-based 
maps (DC 0.56 vs 0.55, respectively), when evaluating the accuracy of 
the latter, pixels covered by clouds (17.6%) were not included despite 
some of them were affected by fires. In fact, whether these cloud- 
covered pixels are ignored when assessing the SAR-O BA map in tile 
52LCH, the accuracy improves up to 12.5% (DC 0.63). Furthermore, as 
indicated in Section 5.3, mismatched reference and detection periods 
may have increased the observed errors (particularly OE) in tiles 33NTG 
and 52LCH. 

Hotspots availability may have also affected the observed mapping 
accuracy. For example, in tile 29TNG (Portugal), most areas affected by 
omission errors were located within a unique fire scar with only one 
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hotspot detected by the thermal MODIS and VIIRS sensors. The reduced 
number of hotspots hindered the CNN training for SAR, optical and both 
combined datasets. However, the absence of hotspots was an exception 
since not only within the remaining fire patches of the same area but also 
in the rest of the tiles such limitations were not observed. 

Regarding the high CE observed in tile 20LQP (South America), 
particularly for the optical-based map (0.37), it was related to a similar 
post-fire increment in SWIR reflectance over both burned (+0.046) and 
unburned (+0.05) areas. The SWIR increment over unburned areas may 
be related to drying unburned vegetation during the post-fire period 
(Gao, 1996). Most pixels (77%) affected by CE were spatially concen
trated along the largest fire perimeter, a fire that accounted for 93.3% of 
all burned pixels in this tile. According to the MODIS-based hotpots 
product (Giglio et al., 2016), FRP values up to 339.9 MW were observed 
for this fire, a 15th fold increase when compared to value registered over 
the remaining fire-patches (20.3 MW), which suggests that heat radi
ating from the very intense fire-affected vegetation on the neighbouring 
areas. As CNN training was based on larger areas around hotspots, un
burned fire-dried pixels were mixed within the training burned samples, 
which resulted in an incorrect learning process. Such errors may be 
easily rectified by relating the sampling areas around hotspots with the 
FRP (i.e., being sampled within a lower radius around the hotspots the 
burned training pixels from intense fires). Soil moisture variations may 
affect the BA mapping accuracy when considering SAR data (Imperatore 
et al., 2017; Gimeno and San-Miguel-Ayanz, 2004; Ruecker and Siegert, 
2000). However, in this study such an effect has not been observed as the 
recorded variations of soil moisture between pre- and post-fire images 
occurred in the entire scene (i.e., a background change). When soil 
moisture changes are concentrated in smaller regions, as a result of a 
focused rainfall, misclassification may occur and translate into increased 
CE (Belenguer-Plomer et al., 2019c). However, despite the reliability of 
the SMAP product (Chan et al., 2018; Chen et al., 2018), its coarse 
spatial resolution (i.e., 9 km) does not allow monitoring spatially 
concentrated changes. Thus, soil moisture effects on SAR-based BA 
mapping may have been underestimated. Further analysis considering a 
more spatially detailed product of soil moisture is needed. However, to 
date, the most spatially detailed soil moisture product, the Copernicus 
Surface Soil Moisture (SSM) at 1 km based on Sentinel-1 data, is only 
available over Europe (Bauer-Marschallinger et al., 2018) precluding a 
more in-depth analysis over most of our study sites. 

5.5. Further research and improvements 

This research has advanced the current state-of-the-art in BA map
ping using both radar and optical sensors of medium spatial resolution. 
The unprecedented scenario in which (i) Sentinel-1 and -2 data free 
distribution under the European Copernicus programme as well as (ii) 
the recent advances in deep learning algorithms (e.g., CNN) have 
allowed investigating novel BA detection and mapping techniques as the 
proposed one. The presented algorithm has the potential to reduce un
certainties on current BA products, estimated at 4 to 4.5 million km2 

globally (Giglio et al., 2018; Lizundia-Loiola et al., 2020). However, in 
order to confirm the global relevance of these findings, further research 
is needed to include additional study sites over all the fire-prone biomes. 
To this end, a recently published Burned Area Reference Database 
(BARD), based on 2769 images acquired by Landsat-7 and -8 and 
Sentinel-2 satellites (Franquesa et al., 2020), would be hugely beneficial 
to validate the proposed algorithm. 

As soil moisture changes the importance of C-band VV and VH 
polarisations when distinguishing between burned and unburned areas 
(Van Zyl et al., 2011; Belenguer-Plomer et al., 2019a, 2019b), BA 
mapping based on Sentinel-1 datasets shall take into account more 
reliable information on soil moisture as ancillary global products 
become available at higher spatial resolutions. Current global products 
(i.e., SMAP at 9 km or CCI soil moisture at 0.25◦) are not accurate 
enough for such purposes. In particular, future iterations may assign 

differentiated weights for the VV and VH polarisations based on soil 
moisture information as VV importance for BA mapping increases with 
soil moisture (Belenguer-Plomer et al., 2019a). Further improvements 
may be achieved by stratifying the training pixels based on the fire 
radiative power (related to fire intensity). Such an approach may reduce 
the increased uncertainties observed over areas affected by low fire in
tensities (i.e., low FRP), which results in reduced fire severity, an 
important factor affecting BA accuracy (Tanase et al., 2014; Belenguer- 
Plomer et al., 2019c). Such a stratification may improve CNN training 
and thus reduce CE and OE for approximately 15% of the burned pixels 
with no recorded hotspots in the close vicinity. Finally, BA mapping 
within the proposed framework may greatly benefit from the concurrent 
use of different SAR wavelengths such as L- (from the future NISAR 
mission, launch planned in 2021) and P-band (from the future Biomass 
mission, launch planned in 2022). Adding longer wavelength may allow 
for discriminating surface fires in forested areas, difficult to be detected 
from optical and shortwave SAR wavelengths such as C-band. 

6. Conclusions 

This study provides insights for the optimum configuration, by land 
cover class, of CNN algorithms fed by Sentinel-1 and/or Sentinel-2 
datasets when detecting and mapping burned area. The analysis was 
carried out over 10 study areas (1 M ha each) distributed within a broad 
range of terrestrial ecoregions, with diverse land cover classes, affected 
by different fire intensities and environmental conditions (i.e., soil 
moisture and precipitation patterns). CNN models with two hidden 
layers allowed reducing the computing time with virtually no loss in 
maintaining mapping accuracy when compared to deeper networks 
regardless of the input data (i.e., Sentinel-1, Sentinel-2 and both) or the 
observed land cover class. Three factors were relevant when defining an 
optimum CNN configuration: (i) the dimension where the convolution- 
based feature extraction was executed (i.e., spectral or spatial), (ii) the 
data normalisation method (z-score or interval [0, 1]), and (iii) the 
optimum threshold of the softmax output layer. In addition, the land 
cover class was relevant when defining the most accurate SAR-O data 
integration strategy. 

The optimum CNN parameters were used to map BA over five in
dependent test areas, not used for algorithm optimisation, with similar 
accuracies when compared to those achieved over the training tiles. The 
consistent behaviour, despite using geographically distributed sites, was 
possible due to a local model training approach supported by the ther
mal anomalies. Error analysis over the test tiles suggested a strong 
relationship between mapping accuracy and the land cover classes, as 
observed in previous studies. The highest and lowest accuracies were 
found over Forests and Grasslands, respectively. When individual data 
were fed into the CNN (i.e., Sentinel-1 or Sentinel-2), the observed 
mapping accuracies were similar to those found in the literature. 
However, the proposed CNN approach was considerably more versatile 
with respect to the existing BA mapping algorithms. Besides, this study 
provided insights into the optimum SAR-O data integration, which al
lows (i) improving BA mapping accuracy when compared to using a 
single sensor type and (ii) wall-to-wall mapping as cloud-related gaps 
affecting BA products from optical datasets were eliminated. Despite 
these strengths, CNN-based BA mapping accuracy was limited by 
different sources of errors including steep topography, low FRP, absence 
of hotspots and presence of fire unrelated land changes. Future research 
should consider more study areas from representative fire-prone biomes 
to confirm the relevance of these findings. 
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