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Abstract: Satellite earth observation is being increasingly used to monitor forests across the world.
Freely available Landsat data stretching back four decades, coupled with advances in computer
processing capabilities, has enabled new time-series techniques for analyzing forest change. Typically,
these methods track individual pixel values over time, through the use of various spectral indices. This
study examines the utility of eight spectral indices for characterizing fire disturbance and recovery in
sclerophyll forests, in order to determine their relative merits in the context of Landsat time-series.
Although existing research into Landsat indices is comprehensive, this study presents a new approach,
by comparing the distributions of pre and post-fire pixels using Glass’s delta, for evaluating indices
without the need of detailed field information. Our results show that in the sclerophyll forests of
southeast Australia, common indices, such as the Normalized Difference Vegetation Index (NDVI)
and the Normalized Burn Ratio (NBR), both accurately capture wildfire disturbance in a pixel-based
time-series approach, especially if images from soon after the disturbance are available. However, for
tracking forest regrowth and recovery, indices, such as NDVI, which typically capture chlorophyll
concentration or canopy ‘greenness’, are not as reliable, with values returning to pre-fire levels in
3–5 years. In comparison, indices that are more sensitive to forest moisture and structure, such as
NBR, indicate much longer (8–10 years) recovery timeframes. This finding is consistent with studies
that were conducted in other forest types. We also demonstrate that additional information regarding
forest condition, particularly in relation to recovery, can be extracted from less well known indices,
such as NBR2, as well as textural indices incorporating spatial variance. With Landsat time-series
gaining in popularity in recent years, it is critical to understand the advantages and limitations of the
various indices that these methods rely on.

Keywords: Landsat; time-series; forest disturbance and recovery; spectral indices; wildfire;
sclerophyll forests

1. Introduction

As scientists shift toward viewing the earth as a single interconnected system [1], understanding
forest dynamics and the complex relationships with human societies becomes more and more pertinent.
This type of analysis requires a multidisciplinary approach integrating local, regional, and global
knowledge [2]. Remote sensing via satellite is ideally suited to meet these needs, especially when
considering the large and often remote areas that forests occupy. Among available satellites, the Landsat
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program offers an unparalleled historical record stretching back over four decades. The opening of
the image archive in 2008, along with the advances in computer processing, has led to a plethora
of new and novel applications exploiting Landsat time-series [3]. Commonly, in the forest domain,
these studies look to establish disturbance and recovery histories, following events such as wildfire,
logging, and insect damage [4–6]. Using a time-series, rather than image pairs, allows for change to be
differentiated from background noise, whilst also capturing longer-term ecological trends [4].

Methods for characterizing forest dynamics (abrupt changes and longer term trends) using
time-series differ, but a point of similarity is the use of spectral indices. Spectral indices convert
multi-spectral satellite data into a single component, so individual pixels can be tracked through time.
Spectral indices also have an advantage over single bands by amplifying desired effects (e.g., changes
in vegetation condition) and reducing unwanted features, such as atmospheric and topographic
noise [7]. There are numerous spectral indices in the literature. However, when considering those
commonly used in Landsat derived pixel-based time-series, the field narrows significantly. Frequently
used is the Normalized Difference Vegetation Index (NDVI) [8]. NDVI is a measure of photosynthetic
biomass, and has been shown to correlate well with ecological parameters, such as the fraction of green
vegetation cover [9] and leaf area index [10]. NDVI is sensitive to changes in vegetation condition,
and has been shown to accurately detect forest disturbances. However, it is generally considered to be
less adept in representing forest recovery, due to grasses and other non-woody vegetation colonizing a
site after a disturbance, and consequently returning the NDVI signal to its pre-disturbance state [11].
In areas of sparse vegetation, NDVI can also be adversely affected by soil reflectance. To correct for
soil brightness, Huete developed the Soil Adjusted Vegetation Index (SAVI), which incorporates a soil
correction factor into the NDVI formula [12].

Indices using short-wave infrared (SWIR) bands are commonly used in Landsat time-series, as
these wavelengths are sensitive to forest structure, moisture, shadowing, and vegetation density [5].
The Normalized Burn Ratio (NBR) is a ratio of the near-infrared and second SWIR band (2.08–2.35 µm),
and was developed by Key and Benson [13] to identify burned areas following fire and provide a
quantitative measure of burn severity. Several authors have found NBR to correlate highly with
field-based measurements in forest ecosystems [14–16], however Roy et al. [17] suggest caution when
using NBR for burn severity mapping as their investigations indicated sub-optimal results. In Landsat
time-series NBR is used extensively, and has proven adept at characterizing forest dynamics in the
United States of America (USA) [18] and Canada [19]. Similar to NBR is the Normalized Difference
Moisture Index (NDMI), which uses the near-infrared with the first SWIR band (1.55–1.75 µm). NDMI
is sometimes favored for tracking disturbances other than fire, and was used by Goodwin et al. [20] for
classifying areas that were disturbed by the Mountain Pine Beetle in western Canada. NBR2 is another
variation of a ratio/difference index, contrasting the two Landsat SWIR bands. It is provided as a
standard product by the United States Geological Survey (USGS), but is rarely used in the literature.
Storey et al. [21] found it useful for post-fire recovery assessment in chamise chaparral vegetation in
southern California, while Stroppiana et al. [22] used it as part of an ensemble to map burned areas.

The Tasseled Cap (TC) transformation of Landsat Multispectral Scanner (MSS) data was first
presented by Kauth and Thomas in 1976, and was later adapted by Crist and Cicone for Landsat
TM data [23]. The various components of TC are created via linear transformations using defined
coefficients. In simplified terms, Brightness (TCB) represents the overall brightness of all bands,
Greenness (TCG) is a contrast between the visible and near-infrared bands, and Wetness (TCW) is a
contrast of the visible and near-infrared with the SWIR bands, making it sensitive to soil and plant
moisture [23]. TC Angle (TCA) [24] is calculated as the arctan of TCG/TCB and describes the vegetation
cover within the TCB-TCG spectral plane [25]. Various time-series studies have shown success with
TC components. For instance, Senf et al. [6] used TC components to track insect disturbance in
British Columbia, Canada, and found that TCG was useful for detecting Western Spruce Budworm
disturbance, whereas TCW and TCB were better indicators of Mountain Pine Beetle disturbance.
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The time-series method, and the index (or indices) used, can significantly alter the outcomes of a
study, as highlighted recently by Cohen et al. [26]. Often, studies evaluating spectral indices look to
establish the strength of the relationship between the index and field data [16]. An alternative approach,
especially when field data are not available, is to use human interpreted reference data as a validation
method. In a recent study, Schultz et al. [27] assessed eight spectral indices in their ability to detect
deforestation in the tropics, using manually interpreted reference pixels for training and validation.
The challenge with using field data and human interpreted imagery to train or validate models is
that the data needs to be both spatially representative of the study area and temporally relevant
(i.e., collected at appropriate time intervals). Many Landsat time-series studies are retrospective
investigations covering large areas, and field data does not exist. Where ancillary data is available, it is
more likely to indicate forest disturbance (e.g., maps of fire extent and severity) than forest recovery,
which requires multiple data collections over many years. One of the strengths of satellites like Landsat
are the consistent re-visit cycles, which provides the data necessary for time-series analysis.

Although research into Landsat spectral indices is comprehensive, this study adds several novel
insights to the existing body of literature. Firstly, it presents a simple and robust method for assessing
and comparing indices using Glass’s delta, which is suitable where limited or no field data are available.
Secondly, it looks at how various indices respond to fire disturbance and recovery in sclerophyll forests,
which are the dominant forest type in Australia, but are also common elsewhere in the world. Thirdly,
it assesses indices in the context of Landsat time-series, but independently of a specific algorithm.

2. Materials and Methods

2.1. Study Area

The study area contains over three million hectares of public forest in the eastern half of Victoria,
Australia (Figure 1). This area was chosen because it has high ecological and economic importance,
and it recently experienced three major wildfire events in the space of six years (see Figure 1 for extent
of burned area). The area consists primarily of sclerophyll forests, tending to be wet in some areas
and dry in others. At the wetter end, trees can attain heights over 75 m, while at the dryer end, trees
are typically shorter than 40 m [28]. Forest classes can be further subdivided according to Australia’s
National Vegetation Information System, as outlined in Table 1 (refer to Mellor and Haywood [29]
for further details). The burned area is primarily contained within three major bioregions—the
Victorian Alps and the Northern and Southern Highlands [30]. The Alps have mild summers and cool
winters, reach elevations up to 2000 m, and typically experience over 1400 mm of annual precipitation.
The Highlands are located on both the northern and southern sides of the Alps, at elevations between
200 m and 1300 m, and typically experience annual rainfall between 500 and 1200 mm [28].

Table 1. Native forest structural classes in Australia.

Tree Height (m) Canopy Cover (%)

Low (<10) Woodland (<50)
Medium (10–30) Open (50–80)

Tall (+30) Closed (>80)

In 2003, wildfires in the northeast of Victoria burned over 1.3 million hectares of forest. Three
years later, over the summer of 2006–2007, major wildfires again burned a further 1 million hectares
of forest, mostly southwest of the 2003 fires. In February 2009, the devastating ‘Black Saturday’ fires
burned 400,000 hectares across the state of Victoria [31], much of it in the Highlands region. Figure 1
indicates the extent of the burned area, which forms the study area for this research.
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algorithm [32], and include a cloud mask that was calculated with the FMask algorithm [33]. We 
created annual summer composites using a Best Available Pixel (BAP) method of image compositing, 
which has been used by other studies for preparing Landsat data for use in long time-series [4,34,35]. 
Typically, it involves choosing the first clear pixel from an image stack that is closest to a preferred 
day of the year, in order to minimize the effects of phenology and variations in sun angle. We chose 
an anniversary date of February 15 and seasonal window of plus/minus 45 days. A late summer date 
was used to capture fires in the year they occurred. A slight penalty (five days) was applied to ETM+ 
images with Scan Line Corrector errors (SLC-off), so that preference was given to TM data if available. 
This resulted in a time-series stack of 25 years with over 98% coverage. 

2.3. Establishment of Candidate Reference Pixels 

Fire maps that were maintained by the state of Victoria’s land management agency [36] were 
used to indicate the general extent of the three large fires. Candidate reference pixels were chosen via 
a systematic sampling process based on the Victorian Forest Monitoring Program (VFMP) plot 
network [37]. The VFMP plot network consists of 786 2km by 2km plots that are distributed 
throughout public land in Victoria, stratified by bioregion and land tenure. In each plot, 10 random 
pixels were selected (resulting in 7860 pixels), and a team of six worked to manually interpret each 
pixel to establish its disturbance history (Figure 1 shows an example of the reference pixel sampling 
method). This was achieved by interrogating multiple lines of evidence, such as state fire records and 
high resolution imagery from Google Earth. Quality assurance was performed by an independent 
operator, who assessed 10% of all the pixels to evaluate the accuracy of the dataset (for details see 

Figure 1. Study area (as indicated by the cross-hatched fire area), showing the location of the Victorian
Forest Monitoring Program (VFMP) plots and example reference pixels.

2.2. Landsat Data and Pre-Processing

We obtained all available Landsat TM and ETM+ surface reflectance products with less than
70% cloud-cover from 1 January to 31 March (representing southern hemisphere summer) for years
1992–2016 (paths 91/92 and rows 85/86), from the USGS archive. Surface reflectance products
were processed using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
algorithm [32], and include a cloud mask that was calculated with the FMask algorithm [33]. We created
annual summer composites using a Best Available Pixel (BAP) method of image compositing, which
has been used by other studies for preparing Landsat data for use in long time-series [4,34,35]. Typically,
it involves choosing the first clear pixel from an image stack that is closest to a preferred day of the year,
in order to minimize the effects of phenology and variations in sun angle. We chose an anniversary
date of February 15 and seasonal window of plus/minus 45 days. A late summer date was used to
capture fires in the year they occurred. A slight penalty (five days) was applied to ETM+ images with
Scan Line Corrector errors (SLC-off), so that preference was given to TM data if available. This resulted
in a time-series stack of 25 years with over 98% coverage.

2.3. Establishment of Candidate Reference Pixels

Fire maps that were maintained by the state of Victoria’s land management agency [36] were
used to indicate the general extent of the three large fires. Candidate reference pixels were chosen
via a systematic sampling process based on the Victorian Forest Monitoring Program (VFMP) plot
network [37]. The VFMP plot network consists of 786 2km by 2km plots that are distributed throughout
public land in Victoria, stratified by bioregion and land tenure. In each plot, 10 random pixels were
selected (resulting in 7860 pixels), and a team of six worked to manually interpret each pixel to establish
its disturbance history (Figure 1 shows an example of the reference pixel sampling method). This
was achieved by interrogating multiple lines of evidence, such as state fire records and high resolution
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imagery from Google Earth. Quality assurance was performed by an independent operator, who assessed
10% of all the pixels to evaluate the accuracy of the dataset (for details see Soto-Berelov et al. [38]). A total
of 1391 pixels fell within the fire boundaries that were considered in this study. Of these, 1056 were
classified as being disturbed by one or more of the three wildfires, and were subsequently used for
the bulk of the analysis presented in this paper. In the section investigating different forest classes,
an additional 5000 random pixels (with a minimum distance of 100 m) were selected inside the VFMP
plots that fell within the fire history polygons, to ensure an adequate number of samples in each class.
Visual inspection of the imagery indicated that, on balance, the majority of these were fire affected.

2.4. Landsat Spectral Indices

From the composite Landsat images, we generated the spectral indices that are shown in Table 2.

Table 2. Landsat spectral indices used in this paper, and a selection of pixel-based time-series studies
using these indices (band numbers refer to Landsat TM and ETM+ bands).

Greenness Indices Formula Pixel-Based Time-Series Studies

Normalized Difference
Vegetation Index (NDVI) NDVI= NIR−RED

NIR+RED [4,39–41]

Soil Adjusted Vegetation
Index (SAVI) SAVI= NIR−RED

NIR+RED+0.5 (1+0.5) [42]

Tasseled Cap Greenness (TCG) −0.1603(band 1) − 0.2819(band 2) − 0.4934(band 3) +
0.7940(band 4) − 0.0002(band 5) − 0.1446(band 7) [6,43,44]

Tasseled Cap Angle (TCA) TCA=arctan TCG
TCB [5,18,34]

Wetness Indices Formula Pixel-Based Time-Series Studies

Normalized Burn Ratio (NBR) NBR= NIR−SWIRband 7
NIR+SWIRband 7

[4,6,45]

Normalized Difference Moisture
Index (NDMI) NDMI= NIR−SWIRband 5

NIR+SWIRband 5
[20,46,47]

Tasseled Cap Wetness (TCW) 0.0315(band 1) + 0.2021(band 2) + 0.3102(band 3) +
0.1594(band 4) − 0.6806(band 5) − 0.6109(band 7) [4,6,43,44]

Normalized Burn Ratio 2 (NBR2) NBR2= SWIRband 5−SWIRband 7
SWIRband 5+SWIRband 7

[21]

Tasseled Cap Brightness (TCB)
(used to calculate TCA)

0.2043(Band 1) + 0.4158(band 2) + 0.5524(band 3) +
0.5741(band 4) + 0.3124(band 5) + 0.2303(band 7) [6,34,43,44]

These include NDVI, SAVI, NBR, NDMI, NBR2, and the Tasseled Cap indices (TCG, TCW,
and TCA). TCB was not included due to its unpredictable nature (sometimes increasing, sometimes
decreasing, following fire); however, it was used to calculate TCA. Landsat TM and ETM+ surface
reflectance products are calibrated for direct use in time-series applications, therefore the same Tasseled
Cap coefficients were used, regardless of sensor (those outlined in Crist [48]). This is the approach
adopted in other Landsat time-series studies [4]. In the remainder of this paper, we refer to indices
as falling within one of two categories, ‘greenness’ or ‘wetness’. These are not official terms, but are
adopted for ease of reporting. The greenness indices focused more on the red and near-infrared bands,
are generally more sensitive to photosynthetic activity, canopy greenness, and leaf cellular structure,
and include NDVI, SAVI, TCG, and TCA. The wetness indices, using the SWIR bands, are more
sensitive to vegetation moisture and forest structure, and these include NBR, NDMI, TCW, and NBR2.

2.5. Data Distributions of Pixels Pre and Post-Fire

To assess the sensitivity of each index in its response to fire, we conducted a number of tests
on the 1056 disturbed reference pixels. For each index, we created image stacks covering 25 years
and extracted the underlying values for each pixel of interest using the raster package [49] in R [50].
The data was then grouped by relative years (e.g., year before fire, year of fire, year after fire, etc.).
The aim was to compare the distributions of the pre-fire values and the post-fire values, and how they
differ across indices (see Figure 2 for a conceptual diagram). To quantify the magnitude of the change
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between pre and post-fire values, we used the concept of effect size. Effect size refers to a family
of statistical measures that are commonly used to measure the difference between two distributions
in a standardized way, independent of sample size. For this study, we used Glass’s delta, which is
simply the difference in means between two groups, divided by the standard deviation of the control
group [51].

∆ =
µ1 − µ2

σ1

where µ1 is the mean of group 1 and µ2 is the mean of group 2, and σ1 is the standard deviation of
group 1. In this exercise, the mean of group 1 (the control group) is the average value in a given index
for all of the reference pixels in the 10 years prior to the fire (e.g., NDVI of 0.7). The mean of group 2 is
the average value of all the pixels post-fire (e.g., NDVI of 0.3). The difference of −0.4 is then divided
by the standard deviation of the control group (e.g., 0.1), which gives an effect size of −4. We chose to
use the standard deviation of only the pre-fire values, rather than all of the values (as with Cohen’s d),
as this reflects the natural range of values for undisturbed forest in our study area. The effect size
that is significant (practically speaking) will differ study to study. Cohen loosely defined effect sizes
equaling 0.2 as small, 0.5 as medium, and 0.8 (or greater) as large [51]. In our case, the variation in the
mean values in the 10 pre-fire years is an indication of what effect size has practical significance, as
this captures the natural fluctuations inherent in each index.
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As well as the mean, we looked at how the standard deviation (SD) changed post-fire, the hypothesis
being that a larger dispersion of post-fire values could be an indicator of which index may more accurately
map fire severity (i.e., more classes or a greater range of values). The change in SD was calculated
by dividing the SD post-fire by the SD pre-fire. We also calculated the percentage of the post-fire
values that overlapped with the pre-fire values, with a lower percentage indicating better separation.
Although this is somewhat captured in the effect size already, it is nevertheless interesting to consider
the percentage of overlapping pixels, especially in terms of the change immediately after the fire when
compared with that of one year later.

2.6. Spectral Response in Different Forest Classes

To determine how indices performed across different forest classes, we split the data based on
tree height and canopy cover (as outlined in Table 2). The original classification was performed as
part of the VFMP [52] and is used in State of the Forest reporting [53]. As outlined earlier, to ensure an
adequate number of samples in each forest class, in addition to the 1056 reference pixels, we generated
a further 5000 random pixels in the VFMP plots, with the fire year being determined by the fire history
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polygons [36]. After removing those that did not fall within a class, we were left with 5759 pixels
(Table 3, note that low tree height was uncommon in this study area and therefore not used). We then
calculated the standardized means for each index in each forest class to establish the sensitivity of
each index in the different forest systems. In addition, Analysis of Variance (ANOVA) tests between
all of the pairs of forest classes (e.g., Medium Wood versus High Open, etc.) were conducted on a
subsample of 250 pixels per class (to maintain class balance), to test for statistical significance between
forest class distributions.

Table 3. Number of reference pixels in each forest class used in this study.

Forest Class No. Pixels

High Closed 534
High Open 2236

High Woodland 291
Medium Closed 251
Medium Open 1639

Medium Woodland 808

Total 5759

2.7. Spectral Recovery Post-Fire

Understanding forest regrowth and recovery following fire is essential for land managers to
make informed management decisions. Free and open access to the long archive of Landsat data has
created new opportunities for assessing the post-disturbance recovery of vegetation in terms of spectral
response [19]. Researchers have approached spectral recovery in different ways. Kennedy et al. [18]
use a measure of recovery based on the difference between the each pixel’s disturbance value and that
of five years after disturbance, while Pickell et al. [11] look at recovery in terms of the number of years
for the spectral index value to reach 80% of its pre-disturbance value. Although Landsat time-series
cannot capture the full complexity of forest recovery, it enables large area assessments that are beyond
the practicality of field based methods. In this context, we looked to evaluate the merits of each index
in tracking post-fire spectral recovery. We compared indices by grouping reference pixels by year
and by considering how each year’s distribution post-fire relates to the overall pre-fire (undisturbed)
distribution. The length of recovery, according to each index, was determined by calculating when the
distribution mean of a post-fire year first reaches the lowest mean from the 10 years pre-fire.

2.8. Changes in Texture Pre and Post-Fire

Texture is not widely used in time-series studies [54], however, it has been a recognized image
processing technique for many years [55,56]. With advances in computer power, there has recently
been interest in considering the spatio-temporal variables [57] in time-series studies. A change in
texture pre-fire to post-fire is interesting in that it may assist in image classification; and, it may indicate
ecological changes in the underlying forest. For example, following fire the forest may become more
diverse (hence have greater textural variation), or it may become more homogenous (less variation).
To capture some of the spatial variations (‘texture’) and how this manifests in different indices, we
looked at each candidate pixel in relation to its neighbours. This was achieved by creating a 60 m
buffer around each pixel and calculating the standard deviation of all the pixels in the buffer area
pre and post-fire. A 90 m buffer was also trialed, and produced similar results; therefore, 60 m was
considered adequate. Again, these values were standardized to delta using the distribution means and
standard deviations, as outlined in Section 2.5.
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3. Results

3.1. Data Distributions of Pixels Pre and Post-Fire

Density histograms indicate the relative distribution of values pre-fire, directly after fire, and one
year post-fire (Figure 3). Three different methods were used to quantify the information that is shown
in the histograms. These results (Table 4) include the change in mean (standardized to delta ∆),
the percentage overlap, and the change in SD. The lowest mean value from the 10 years prior to the fire
is also presented as an indication of the natural undisturbed variation. For example, the standardized
mean for NDVI for the fire year is −4.3, which is significantly lower than the lowest mean from the
10 years prior to the fire, which is −0.4. Our results show that the mean of the NDVI values changes
the most directly after a fire, by −4.30, followed by TCA with −3.90, and NBR with −3.58. One year
after fire, NBR has the greatest mean change, with −2.04, followed by NBR2 with −1.86, and NDMI
with −1.63. NDVI has the smallest percentage of overlapping pixels directly following fire, with 14%,
while one year later NBR2 shows greatest separation, with 39%. NBR shows the greatest change in SD
both directly following fire and one year later, changing by a factor of 1.96 and 1.46, respectively.
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Table 4. Post-fire response of each index, shown as a standardized change in mean, percentage overlap,
and relative change in standard deviation, with best results indicated in bold.

Year of Fire Year after Fire

Lowest Mean—10 Years
Preceding Fire

Change in
Mean (∆)

%
Overlap

SD
Change

Change in
Mean (∆)

%
Overlap

SD
Change

NDVI −0.40 −4.30 14% 1.91 −1.26 57% 1.39
SAVI −0.22 −2.56 20% 1.05 −0.88 63% 1.11
TCG −0.22 −2.38 20% 1.02 −0.89 62% 1.06
TCA −0.33 −3.90 16% 1.68 −1.54 50% 1.35
NBR −0.30 −3.58 23% 1.96 −2.04 41% 1.46

NDMI −0.35 −2.61 28% 1.36 −1.63 44% 1.12
TCW −0.28 −1.80 48% 1.76 −1.47 51% 1.39
NBR2 −0.18 −3.17 18% 1.62 −1.86 39% 1.20

3.2. Spectral Reponse in Different Forest Classes

For each of the eight indices, the change in mean directly following a fire was calculated for each
forest class, again being standardized using the mean and standard deviation of the pre-fire values
(Figure 4). In general, these results show that all of the indices are most responsive in woodland
systems (low canopy cover). The wetness indices, particularly TCW, showed much less distinction in
closed forest systems. As in the previous section, NDVI and TCA displayed the greatest changes, with
NDVI shifting by as much as −4.8 in high woodland systems. In contrast, TCW only shifted by −0.5
in medium closed forests. NBR and NBR2 consistently occupied positions 3 and 4 in all of the forest
classes. ANOVA tests on a subsample of 250 pixels per class showed that all the indices displayed
significant differences between most forest classes, with p < 0.001 for all combinations, except for the
following: Medium Closed and High Closed, and Medium Open and High Woodland, which none of
the indices were able to clearly distinguish between; and, Medium Woodland and High Woodland,
which SAVI was unable to distinguish between, with all of the other indices having p-values < 0.02.
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3.3. Spectral Recovery Post-Fire

Figures 5 and 6 show the mean values for five years prior to a fire (for context) and nine years
after (indicating recovery), for greenness and wetness based indices, respectively (note that pixels
burned in 2009 did not contribute to the distributions of years 8 and 9). Figure 5 shows the greenness



Remote Sens. 2018, 10, 460 10 of 17

indices (particularly SAVI and TCG) almost returning to pre-fire levels three years after fire, although
they do not technically pass the lowest pre-fire mean until year five. For wetness indices (Figure 6),
the time to recover is longer, with NDMI reaching the lowest pre-fire mean at year seven, NBR and
TCW at year eight. NBR2 does not reach pre-fire levels even after nine years, and interestingly, this
index has a more consistent (smooth) recovery. Table 5 outlines the average number of years that each
index takes to recover, defined by the year when the mean reaches the lowest mean from the ten years
prior to fire disturbance.
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3.4. Changes in Texture Pre and Post-Fire

Results of the texture analysis are shown in Figures 7 and 8 for greenness and wetness based
indices, respectively. Of the greenness indices, NDVI and TCA follow a similar trend, showing an
increase in textural variation following a fire. In contrast, SAVI and TCG show less textural variation
directly after a fire, but an increase after one year. NDVI and TCA, in particular, show that in the years
following a fire, there is an increase in pixel variation, which gradually returns to pre-fire levels around
eight or nine years after the fire. In the wetness indices, NBR, NDMI, and TCW all show an increase in
textural variation directly after a fire, and return to pre-fire levels at around year four. These results are
quite different to the recovery metrics that are presented earlier (based on individual pixels), where
greenness indices returned to pre-fire levels before the wetness indices. NBR2 appears insensitive to
textural variation, maintaining a similar level for the entire time series.
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4. Discussion

For all of the indices, values that were measured directly following a fire were markedly different
from the pre-fire (undisturbed) averages. With the exception of TCW, all of the indices showed a
high degree of separation and a low percentage of overlap between pre and post-fire distributions.
Greenness indices showed high sensitivity directly after a fire; however, one year later, they displayed
much less distinction. In contrast, wetness indices experienced smaller differences directly following a
fire event, but one year later had greater separation. These results were somewhat expected, and they
align with findings in other studies [5,11]. Furthermore, they suggest that in sclerophyll forests,
vegetation quickly regains photosynthetic activity at the canopy level following a fire, with a large
proportion of pixels returning to pre-fire levels within one year. This is most likely attributable to a
combination of epicormic growth, as well as understory vegetation, such as grasses and non-woody
plant matter. It is worth noting that TCA, which we have classed as a greenness index, appears to be
more capable than the other greenness indices in capturing fire disturbances one year after the event.

Our results also clearly indicate greater dispersion of values in most indices following fire,
with the exception of SAVI and TCG, which hardly change at all, and NDMI, which changes little.
The standard deviations for both NBR and NDVI, for example, almost double following fire, and still
maintain relatively high levels of dispersion one year later. Given that fires impact forests across
a range of severity levels, a greater dispersion of values post-fire may indicate that the index is
more suitable for mapping burn severity. Indeed, NBR (as noted earlier), has been used extensively
for this purpose [14–16], although these authors concur that best results are usually found only in
forested ecosystems.

When evaluating the performance of the indices across different forest systems, relatively speaking
they performed similarly. That is, post-fire changes immediately after a fire were greatest in NDVI and
TCA in all forest classes, followed by NBR and NBR2. We were not able to detect major differences
between some forest classes (High Closed—Medium Closed and Medium Open—High Wood) in any
index. However, there is clearly a distinction with regards to pre- and post-fire values between closed
canopy forests versus woodland or open systems. This may indicate that Victoria’s closed sclerophyll
forests are more resilient to fire than their open counterparts; however, it could equally be a function
of Landsat only capturing spectral changes of the canopy. More research into forest types (in terms of
tree species) could provide further information in this domain.

In agreement with other studies [11], we found that wetness indices take longer than greenness
indices to return to pre-disturbance levels (eight years vs. five years). Depending on the ecological
variable of interest, there may be a preference to adopt the longer timeframes as more accurately
representing forest recovery. While an index such as NDVI captures the initial return of vegetation,
and correlates with biophysical parameters, such as the fraction of green vegetation cover and green
leaf biomass [9], it is limited in its ability to represent structural attributes, which are often more
important indicators of factors, such as biodiversity and carbon [11]. In contrast, NBR and the other
wetness indices are more closely aligned with forest moisture and structure through the utilization
of SWIR bands. Other studies suggest that TCW is well suited to observe forest recovery due to
its ability to track overall moisture content [43], however, in our study, we found it less reliable
because of its low level of separation directly following a fire. Like Storey et al. [21], we found that
NBR2 has extended recovery timeframes, and may be worth considering for future post-fire recovery
studies. In southeast Australia, many eucalypts have the ability to survive low and moderate fire
through epicormic resprouting (Figure 9), whereas after high intensity stand replacement fires, forest
regrowth is dependent on new seedlings (Figure 10) [58], which naturally thin out as the forest matures.
However, these recovery patterns are also species and location dependent. In this study, we looked
at relatively few pixels across a very large area (3 million hectares), thus grouping all of the pixels
together may not be the ideal approach for considering forest recovery dynamics.
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The texture analysis produced unexpected results. Whereas, in the pixel-based analysis it was the
greenness indices that quickly returned to pre-fire levels, in the texture analysis, it was the wetness
based indices. NBR2’s lack of textural variation makes it unsuitable for this type of analysis, perhaps
due to the high correlation between the SWIR bands. NDVI and TCA both indicated a relatively long
recovery time in terms of the textural variation, returning to pre-fire levels in eight to nine years. This
time period agrees with the wetness indices in the individual pixel analysis. This finding has some
potentially useful ramifications. One is that there may be some additional information in terms of
forest recovery that can be unlocked through the consideration of spatial variation, and two, given
that variation appears in the red and near-infrared bands, this facilitates the use of a greater range of
available data (e.g., Landsat MSS data going back to 1972, before the SWIR bands were introduced,
or other satellite systems). Studies demonstrating improved classification accuracies with texture
typically include a range of variables [59]. In this study, the only texture variable investigated was
that of standard deviation, which is one of many variables that are found in the literature; additional
information may be available in other metrics. Including texture in pixel-based time-series is an
unexplored area and there are further research opportunities in this domain, however there are
considerable technical challenges to overcome in order to incorporate spatial components into a
temporal analysis.
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5. Conclusions

This paper presents a straight-forward method for comparing the merits of various spectral
indices by considering all of the pixels as a single distribution. In this research, we made use of existing
reference data to select our candidate pixels, but the method itself does not rely on detailed reference
data. The main advantage in using these particular pixels was that they had been systematically
sampled, based on plots stratified by bioregion and forest tenure [37]. Thus, they are an accurate
reflection of the entire forest estate in the study area. However, by considering all of the pixels as equal
participants to a single distribution, detailed information in individual pixels may be lost. Nonetheless,
the purpose of the exercise was not to derive detailed information about forest dynamics, but to
determine which indices may be best suited for this task. Of the indices that were tested, we consider
NBR as the most reliable index for tracking fire disturbance and recovery in sclerophyll forests, due
to its consistently high performance across the range of tests performed. Although NDVI and TCA
showed greater discrimination between pre and post-fire pixels directly after a fire, NBR was better one
year after a fire event. In addition, it presented longer recovery time-frames (an average of eight years),
which is a better indicator of forest structure and the return of biomass. As computing power increases,
it conceivably becomes less important to choose only one or a few indices, with ensembles of indices
offering improved results [26]. However, for large area mapping the literature suggests that we are not
yet at that stage. In addition, as more and more data from various satellite sensors becomes available,
the selection of appropriate indices will remain important. The methods that are presented here offer a
simple solution for an evidence based selection process. Although we have primarily chosen simple
indices that are used commonly in Landsat time-series, our methods are equally applicable to other
indices and satellites, as well as being transferable to other ecosystems.
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