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A B S T R A C T

In Mediterranean fire-prone ecosystems, shifts in fire regime as a consequence of global change could modify the
resilience of vegetation communities. In this paper, we aim to compare the efficiency of high and moderate
spatial resolution satellite imagery in the evaluation of resilience in a fire-prone landscape under different fire
regime categories using two pixel unmixing techniques. A time series of Landsat (ETM+ and OLI; spatial re-
solution of 30 m) and WorldView-2 (spatial resolution of 2 m) imagery collected between 2011 (pre-fire con-
ditions) and 2016 were used to estimate the temporal variation of fractional vegetation cover (FVC) as a
quantitative measure of forest resilience. For this time series, FVC was computed under four fire-regime cate-
gories of recurrence and severity using two approaches: dimidiate pixel model and multiple endmember spectral
mixture analysis (MESMA). The dimidiate pixel model was computed using NDVI as spectral response for the
case of Landsat imagery and NDVI and red-edge NDVI (RENDVI) for WorldView-2. MESMA was applied to unmix
WorldView-2 and Landsat imagery into four fraction images: photosynthetic vegetation (PV), non-photo-
synthetic vegetation (NPV), soil and shade. The PV shade normalized fraction corresponds to the FVC. In summer
of 2016 we established 85 30 × 30 m field plots and 360 2 × 2 m field plots to measure the percentage of total
vegetation cover in order to validate the FVC estimates made from remote sensing data. The FVC time series
showed the same general pattern with both spatial scales and modeling approaches, high fire recurrence cate-
gories registering the highest resilience. The accuracy of the dimidiate pixel model was significantly higher for
WorldView-2 based estimates (RMSE: 5–10%) than for Landsat (RMSE: 10–15%). The dimidiate pixel model
computed from NDVI for both Landsat and WorldView-2 underestimated FVC at high field-sampled vegetation
cover, while MESMA estimations were accurate for the entire range of vegetation cover for both satellites. The
fraction of photosynthetic vegetation calculated using WorldView-2 had a higher performance (RMSE: 4–6%)
than that quantified from Landsat (RMSE: 6–8%). The linear relationships assumed for validation purposes were
statistically significant for both sensors and modeling approaches. Our study demonstrates the highest perfor-
mance of very high spatial resolution satellite imagery and MESMA models in the quantitative estimation of FVC
as a measure of post-fire resilience.

1. Introduction

Climatic and socioeconomic changes mainly occurred since the
second half of the last century (Doblas-Miranda et al., 2017; Vilà-
Cabrera et al., 2018) are major drivers that have led to an increase in
the extent, recurrence and severity of wildfires in fire-prone ecosystems
in the Mediterranean Basin (Chuvieco et al., 2010; Álvarez et al., 2012;
Pausas and Fernández-Muñoz, 2012; Quintano et al., 2015; Fernández-

García et al., 2018a). In these ecosystems, shifts in fire regime can
modify the resilience of vegetation communities (Doblas-Miranda et al.,
2017), depending mainly on species adaptive traits (i.e. resprouting
from parental tissues and seedling recruitment) (e.g. Pausas and Keeley,
2014; Tessler et al., 2014; González-De Vega et al., 2016).
In European Mediterranean areas, fire-prone pine ecosystems, such

as those dominated by Pinus pinaster Aiton, are particularly subject to
the occurrence of wildfires (Fernández-García et al., 2018a). High fire
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recurrence and burn severity in these ecosystems may jeopardize forest
resilience as the result of both a decrease in the resprouting capacity of
vegetation (Díaz-Delgado et al., 2002; Doblas-Miranda et al., 2017) and
a failure of seedling recruitment in short interval between fires (Calvo
et al., 2008; Calvo et al., 2016; Doblas-Miranda et al., 2017). Therefore,
the assessment of how forest evolves towards its pre-fire structure and
function should be conducted considering the spatial variation of fire
regime parameters. This evaluation is essential for understanding the
impact of wildland fires in the ecosystems, as well as for endorsing post-
fire management decision-making (De Santis and Chuvieco, 2009;
Veraverbeke et al., 2012).
Fractional vegetation cover (FVC) is a canopy biophysical property

(Gitelson et al., 2002) that can be used to measure quantitatively eco-
system resilience because it characterizes vegetation quality and re-
flects ecosystem changes (Jiapaer et al., 2011; Chu et al., 2016; Wang
et al., 2017; Gao et al., 2020). This parameter is defined as the ratio of
vertical projected area of green vegetation to the total statistical area of
land surface (Gitelson et al., 2002; Li et al., 2015a, 2015b; Song et al.,
2017). The traditional method for measuring FVC is based on field
surveys (Li et al., 2015a, 2015b). This method presents high reliability
(Zhang et al., 2013), but is expensive, labor-intensive and time-con-
suming (Liang et al., 2008; Veraverbeke et al., 2012; Fernandez-Manso
et al., 2019), so its wide scale application is unfeasible (Jia et al., 2015).
Nowadays, remote sensing techniques (RST) are recognized as the most
efficient way to derive FVC on a large scale (Song et al., 2017). How-
ever, accurate ground measures of FVC are indispensable for remote
sensing data validation (White et al., 2000; Zhou and Robson, 2001).
Conventionally, low spatial resolution satellite sensors (e.g. NOAA-
AVHRR, MODIS and HJ-1/HSI) (Gutman and Ignalov, 1998; DeFries
et al., 1999; Zeng et al., 2000; Scanlon et al., 2002; Montandon and
Small, 2008; Okin et al., 2013; Zhang et al., 2013; Jia et al., 2015) and
moderate spatial resolution satellite sensors (e.g. Landsat and AVIRIS)
(Roberts et al., 1998; Jiapaer et al., 2011; Delamater et al., 2012;
Veraverbeke et al., 2012; Chu et al., 2016) have been used to estimate
FVC. Nevertheless, the spatial resolution of these sensors is commonly
larger than the length scale of heterogeneous landscapes (Garrigues
et al., 2008; Li et al., 2015a, 2015b), probably containing a single pixel
spectra from different ground covers (Xiao and Moody, 2005). More-
over, FVC field validation requires information on the scale of in-
dividual plant elements, this approach being problematic with coarse
satellite imagery (Gutman and Ignalov, 1998). Hence, high spatial re-
solution satellite imagery could be more suited for the accurate mon-
itoring of post-fire resilience in heterogeneous landscapes, where the
vegetation horizontal structure varies at fine scale (Meng et al., 2017;
Meng et al., 2018).
Several approaches can be used to estimate FVC from remote sen-

sing techniques as a measure of post-fire resilience: empirical, pixel
unmixing and physical-based models. (i) Empirical models have been
used in numerous studies (Graetz et al., 1988; Dymond et al., 1992;
Wittich and Hansing, 1995; Purevdor et al., 1998; North, 2002; Cuevas-
González et al., 2009; Hill et al., 2017), but this approach is highly
dependent on local measurements (Jiapaer et al., 2011) and an ex-
haustive transferability analysis is required for its application on large
spatial scales (Fernández-Guisuraga et al., 2019a). (ii) Pixel unmixing
models rely on the assumption that the image pixel consists of several
spectrally distinct ground components that contribute a part to the
surface reflectance captured by the remote sensor (Zhang et al., 2013;
Li et al., 2015a, 2015b), being the pixel FVC the ground component
proportion that corresponds to vegetation cover (Wang et al., 2017). In
this approach, ground cover abundance is directly derived from remote
sensing data, without the need of an initial calibration based on field
data (Veraverbeke et al., 2012). Among the existing pixel unmixing
models, the dimidiate pixel model assumes that pixel spectral in-
formation is a linear combination of only two components: vegetation
and non-vegetation cover (Jiapaer et al., 2011; Wang et al., 2017). This
model has been successfully used in several studies to estimate FVC

(Gutman and Ignalov, 1998; Wu et al., 2004; Jiang et al., 2006;
Montandon and Small, 2008; Jing et al., 2010; Jiapaer et al., 2011;
Johnson et al., 2012; Chu et al., 2016; Wei et al., 2018) and it is widely
applicable at global scale without geographical constraints (Zhang
et al., 2013). The main shortcoming of the dimidiate pixel model is the
influence of background spectra variability in the FVC estimation
(Montandon and Small, 2008; Ding et al., 2016) derived from the model
assumption itself. The most common pixel unmixing approach is the
linear spectral mixture analysis (LSMA) model to derive FVC from the
spectral features of the ground components or endmembers (Xiao and
Moody, 2005; Sankey et al., 2008; Jiménez-Muñoz et al., 2009; Solans-
Vila and Barbosa, 2010; Jiapaer et al., 2011; Li et al., 2015a, 2015b).
LSMA has a direct physical sense (Bian et al., 2016; Melville et al.,
2019) and it is sensitive to small changes in the FVC (Elmore et al.,
2000). However, only one spectral signature can be incorporated in
each endmember to account for the variability of a terrain feature
(Veraverbeke et al., 2012). In contrast, multiple endmember spectral
mixture analysis (MESMA; Roberts et al., 1998) allows several end-
member spectra to characterize each pixel constituting feature
(Quintano et al., 2017) accounting for the natural variability of the
ground feature (Veraverbeke et al., 2012). (iii) Finally, physical-based
methods based on the inversion of radiative transfer models (RTMs) to
simulate physical relationships between remote sensing data and FVC
(Wang et al., 2017) have a sound theoretical basis but they are complex
and the direct inversion is complicated (Jia et al., 2015). RTMs en-
compass leaf optical models (e.g. PROSPECT; Jacquemoud and Baret,
1990) used to simulate leaf reflectance and transmittance based on the
leaf biochemical and anatomical properties (De Santis et al., 2009;
Verrelst et al., 2016), canopy optical models (e.g. GeoSail; Huemmrich,
2001) used to simulate canopy reflectance and transmittance based on
the canopy structural attributes (Kattenborn and Schmidtlein, 2019;
Sinha et al., 2020), as well as coupled leaf-canopy models as PROSAIL
(Jacquemoud et al., 2009) or PROSPECT + GeoSail (De Santis et al.,
2009). In particular, the use of geometric canopy models such as Geo-
Sail, coupled with a leaf model, allows the simulation of several vege-
tation layers for retrieving vegetation biophysical parameters in land-
scapes with structurally heterogeneous vegetation (Kötz et al., 2004; De
Santis et al., 2009; Jurdao et al., 2013). Typically, the indirect inversion
of RTMs using neural networks is one of the most widely used methods
given its good computational efficiency and performance (Kallel et al.,
2007; Jia et al., 2016). Therefore, this method is usually selected for
FVC estimation at global scale (Verger et al., 2011; Baret et al., 2013;
Yang et al., 2016). However, model inversion to retrieve vegetation
biophysical variables has several uncertainties related to the lack of
information on model parameters for particular regions, so the para-
meters are allowed to fluctuate between a certain range (Yebra and
Chuvieco, 2009), as well as related to model simplifications concerning,
for example, leaf scattering (Atzberger, 2004).
As noted above, most research addresses the FVC estimation using

moderate or low spatial satellite imagery through any of the described
approaches. High spatial resolution satellite imagery has received little
attention for this purpose, especially in the fire ecology field, and is
normally used to validate coarse resolution FVC data, to derive
homogeneous endmembers to unmix coarse imagery or in image clas-
sification schemes (Melville et al., 2019). The increasing accessibility of
high spatial resolution satellite imagery provides an opportunity to
estimate post-fire FVC at fine scale in the assessment of the resilience of
fire-prone ecosystems. Another knowledge gap is to determine which
method of FVC quantitative estimation is the most appropriate in post-
fire resilience studies at short-term.
The objective of this research paper was to compare the potentiality

of satellite imagery at high and moderate spatial resolution in the
evaluation of post-fire resilience in a Mediterranean fire-prone eco-
system. Specifically, we tried to: (1) Compare the efficiency of
WorldView-2 imagery and Landsat (ETM+ and OLI) for the quantita-
tive estimation of fractional vegetation cover for a time series in
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different post-fire recurrence and severity categories. (2) Evaluate the
performance of different model approaches (dimidiate pixel model from
different vegetation indices and multiple endmember spectral mixture
analysis) for quantifying fractional vegetation cover as a measure of
post-fire resilience with high and moderate spatial resolution imagery.

2. Materials and methods

2.1. Study area. Fire recurrence and severity

The study was conducted within the perimeter of a convective
crown stand-replacing megafire that burned 11,602 ha of a forest
dominated by Pinus pinaster in August 2012. The study area (Fig. 1) is
located in northwest Spain (Sierra del Teleno mountain range), with an
altitude between 836 and 1499 m a.s.l. This area presents an annual
average rainfall and temperature of 640 mm and 10 °C (Ninyerola et al.,
2005), respectively, with less than two months of summer drought.
These climatic conditions correspond to a Mediterranean transition
area (Fernández-Guisuraga et al., 2019b). The pre-fire landscape was
dominated by mature Pinus pinaster, Quercus pyrenaica and Quercus ilex
stands with a tall understory layer (Taboada et al., 2018). Vegetation
following fire is dominated by tree regeneration stands in a seedling
growth stage, with a shrubby understory layer dominated by Halimium
alyssoides, Pterospartum tridentatum and Erica australis (Fernández-
Guisuraga et al., 2019a). The study area is characterized by a strong
environmental heterogeneity derived from the vegetation community
structure and composition (Quintano et al., 2017; Fernández-Guisuraga
et al., 2019b).
Considering the last 15 years, this area suffered another megafire in

1998 that burned 3000 ha. Therefore, we defined two fire recurrence
categories: low fire recurrence (one fire in the last 15 years within the
burnt scar of the 2012 fire) and high fire recurrence (two fires in the last
15 years within the burnt scar of the 2012 fire). Moreover, we estimated
fire severity on the basis of the differenced Normalized Burn Ratio
index (dNBR) (Key, 2006) derived from Landsat 7 ETM+ pre-fire and
post-fire images (September 20th, 2011 - September 6th, 2012) and the
Composite Burn Index (CBI) (Key and Benson, 2006). CBI was measured
three months after the fire over 54 field plots of 30 × 30 m randomly
distributed across the study area, using an adapted version by
Fernández-García et al. (2018b) of the original CBI protocol. We es-
tablished two fire severity categories computed from CBI thresholds

(Quintano et al., 2015) using a linear regression model: low severity
(dNBR ≤ 573) and high severity (dNBR > 573) (Fig. 1). The corre-
lation between dNBR and CBI had a coefficient of determination of
0.84.

2.2. Satellite imagery data and processing

Four images of Landsat (ETM+ and OLI) and WorldView-2 sensors
were acquired in summer months between 2011 (pre-fire conditions)
and 2016 (Table 1) during peak biomass of the study area. Acquisition
dates were chosen on the basis of the availability of the on-demand
WorldView-2 imagery.
The Landsat imagery was downloaded from the USGS Earth

Explorer server (http://earthexplorer.usgs.gov/) with a cloud cover
lower than 5%. The spatial resolution of Landsat optical bands (ETM+:
B1 to B5 and B7; OLI: B1 to B7) is 30 m and is delivered by the USGS
geometrically rectified and radiometrically corrected (Fernández-
García et al., 2018a). Landsat ETM+ and OLI imagery were atmo-
spherically and topographically corrected to a surface reflectance pro-
duct using the ATCOR atmospheric correction algorithm (Richter and
Schläpfer, 2018). Input data for the atmospheric correction (visibility
and column water vapor amount) were acquired from the State Me-
teorology Agency of Spain (AEMET). Moreover, Landsat ETM+ surface
reflectance product was transformed with the statistical functions pro-
vided by Roy et al. (2016) to be comparable to Landsat OLI.
WorldView-2 imagery was delivered by DigitalGlobe with a spatial

resolution of 2 m in the optical bands (B1 to B8) and a cloud cover

Fig. 1. Location of the study area within the burnt scar of 11,602 ha and recurrence-severity categories.

Table 1
Acquisition date of the satellite imagery used in the present study (Landsat ETM
+ and OLI and WorldView-2) to assess fractional vegetation cover following
fire.

Sensor Acquisition date Fire date equivalence

Landsat 7 ETM+ September 20, 2011 Pre-fire
WorldView-2 September 19, 2011
Landsat 8 OLI September 17, 2013 Year 1
WorldView-2 September 10, 2013
Landsat 8 OLI June 19, 2015 Year 3
WorldView-2 June 16, 2015
Landsat 8 OLI June 21, 2016 Year 4
WorldView-2 June 23, 2016
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lower than 10%. The imagery was orthorectified with rational poly-
nomial coefficients (RPC) provided in the image metadata, a digital
elevation model (DEM; RMSEZ < 20 cm) and 100 ground control
points. The atmospheric and topographic correction to obtain a surface
reflectance product was similar to the procedure performed with
Landsat imagery.

2.3. Derivation of FVC from a dimidiate pixel model using vegetation indices

In the dimidiate pixel model, FVC exhibits a linear relationship with
the spectral response (S) of a mixed pixel representing vegetation -v-
and soil -s- (Wittich and Hansing, 1995; Zhang et al., 2013) (Eq. (1)):

=FVC S S
S S

s

v s (1)

In this approach, the most applied spectral response (S) for the es-
timation of FVC is the Normalized Difference Vegetation Index (NDVI)
(Jiapaer et al., 2011; Yang et al., 2013; Zhang et al., 2013), which
shows a high linear correlation with FVC (Zhang et al., 2013; Chu et al.,
2016; Mu et al., 2018). Other authors suggested non-linear relation-
ships (e.g. quadratic terms) (Carlson and Ripley, 1997; Gitelson et al.,
2002), but they do not offer better results in all case studies (Wittich
and Hansing, 1995; Jiménez-Muñoz et al., 2009).
We computed a time series of pre- and post-fire FVC in different

categories of recurrence and severity by applying the dimidiate pixel
model to Landsat (ETM+ and OLI) and WorldView-2 imagery, using
NDVI as the spectral response for the former case and NDVI and red-
edge NDVI (RENDVI; Xie et al., 2018) for the latter. The red-edge
spectral region available in the WorldView-2 sensor has a great po-
tential for the retrieval of vegetation biophysical variables (Xie et al.,
2018) because of its high sensitivity to changes in the chlorophyll
concentration of leaves and canopies, leaf area index and biomass
density (Gitelson et al., 2005; Delegido et al., 2011). NDVI was calcu-
lated from Landsat ETM+ using the Eq. (2) and from Landsat OLI using
the Eq. (3). In the case of WorldView-2, NDVI was computed with Eq.
(4) and RENDVI with Eq. (5).

= ++NDVI (B4 B3)/(B4 B3)ETM (2)

= +NDVI (B5 B4)/(B5 B4)OLI (3)

= +NDVI (B7 B5)/(B7 B5)WV 2 (4)

= +RENDVI (B7 B6)/(B7 B6)WV 2 (5)

Introducing NDVI or REDNVI in Equation (1), FVC is estimated with
Eq. (6):

=FVC RE NDVI RE NDVI
RE NDVI RE NDVI
( ) ( )
( ) ( )

s

v s (6)

(RE)NDVIv and (RE)NDVIs parameters refer to representative (RE)
NDVI values for pure green vegetation pixel (FVC = 1) and for pure
bare soil (FVC = 0), respectively. In some cases, the estimation of these
parameters becomes challenging (Mu et al., 2018) because they are
specific for each region and season (Jiménez-Muñoz et al., 2009). The
(RE)NDVIs value may change even in the same satellite scene de-
pending on soil moisture and type (Zhang et al., 2013). In this paper,
we used remote sensing data at very high spatial resolution (World-
View-2) and very high spatial resolution ortophotographs (0.5 m)
provided by the Spanish National Center of Geographic Information
(http://www.cnig.es/) to delineate training samples of pure green ve-
getation and bare soil, together with field knowledge. This is considered
as an adequate method to estimate (RE)NDVIv and (RE)NDVIs para-
meters (Chu et al., 2016; Song et al., 2017). Training samples have
enough size to accommodate at least a pure Landsat pixel within them.
One hundred training samples of pure green vegetation and bare soil
were delineated in the WorldView-2 image of each study year (2011,
2013, 2015 and 2016, i.e. pre-fire and one, three and four years after

fire). For each year, the samples of pure green vegetation and bare soil
were averaged to compute the (RE)NDVIv and (RE)NDVIs parameters,
respectively, from Landsat and WorldView-2 imagery (Table 2).

2.4. Derivation of FVC from spectral mixture analysis

Multiple endmember spectral mixture analysis (MESMA) is an ex-
tension of linear spectral mixture analysis (LSMA) in which each pixel
can be modeled with different numbers and types of endmembers
(Roberts et al., 1998; Bue et al., 2015; Quintano et al., 2017). In this
paper, the endmember spectra for MESMA were obtained from the
imagery itself, instead of using spectral libraries, because: (i) image
endmembers are collected at the same scale as the image data (Meng
et al., 2017; Quintano et al., 2017); and, (ii) the ease of obtaining pure
endmembers with fine-grained satellite imagery (Clark and Kilham,
2016; Meng et al., 2017). The first post-fire Landsat OLI and World-
View-2 images (one year after fire) were used to collect endmembers for
each sensor because non-photosynthetic vegetation was not present in
enough quantity in pre-fire and late (three and four years) post-fire
imagery. Training areas consisting of uniform patches of a single
ground cover type were defined in the first post-fire images to collect
potential endmembers for each sensor. Training areas for soil (sandy
soil -Soil 1- and red clay soil -Soil 2-), green vegetation (Pinus pinaster,
Quercus sp. And shrub) and non- photosynthetic vegetation (woody
debris and charred logs) were based on field knowledge and very high
spatial resolution ortophotographs (0.5 m). Iterative endmember se-
lection (IES) (Schaaf et al., 2011; Roth et al., 2012) is a semi-automated
technique that was used to select optimal endmembers from the spec-
tral library and improve MESMA run times (Quintano et al., 2017). The
selected endmembers were grouped into three spectral libraries: pho-
tosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and
soil. Thus, the WorldView-2 and Landsat imagery were unmixed into
four fraction images: PV, NPV, soil and shade. Following Roberts et al.
(2003, 2012), Fernandez-Manso et al. (2016) and Quintano et al.
(2017), the performance of all candidate models was assessed using the
following criteria for each pixel: minimum and maximum allowable
fraction images value between −0.05 and 1.05, respectively; shade
fraction value lower than 0.8; and, maximum permissible RMSE of
0.025. If several models fulfilled those conditions, the model with the

Table 2
Mean and standard deviation (std) of pure green vegetation and bare soil in the
training samples to estimate the (RE)NDVIv and (RE)NDVIs parameters, re-
spectively.

Vegetation samples

WV-2 NDVI WV-2 RENDVI ETM+/OLI NDVI

2011 mean 0.8271 0.4324 0.7944
std 0.0610 0.0312 0.1136

2013 mean 0.7722 0.4157 0.7668
std 0.1278 0.0354 0.0742

2015 mean 0.8687 0.4357 0.7900
std 0.0623 0.0367 0.0942

2016 mean 0.8311 0.3930 0.7951
std 0.0806 0.0380 0.1114

Soil samples

WV-2 NDVI WV-2 RENDVI ETM+/OLI NDVI

2011 mean 0.0730 0.0403 0.1258
std 0.0224 0.0280 0.0452

2013 mean 0.0722 0.0422 0.1119
std 0.0493 0.0264 0.0654

2015 mean 0.0676 0.0518 0.1173
std 0.0321 0.0526 0.0507

2016 mean 0.0781 0.0429 0.1053
std 0.0488 0.0447 0.0416
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lowest RMSE was chosen. Finally, a shade normalization was performed
in the fraction images (GV, NPV and soil) to obtain the relative abun-
dance of non-shade endmembers (Quintano et al., 2017; Roberts et al.,
2019) for each sensor. The GV shade normalized fraction corresponds
to the FVC.
The Visualization and Image Processing for Environmental Research

(VIPER) Tools 2.1 (Roberts et al., 2019) was used to perform the
MESMA runtime.

2.5. Field estimation of fractional vegetation cover (FVC) and validation

In summer of 2016 (from June to July) we established 85 plots of
30 × 30 m and 360 plots of 2 × 2 m in the field to evaluate the per-
formance of the FVC estimations made from both the dimidiate pixel
model and the multiple endmember spectral mixture analysis for the
year 2016 with Landsat OLI and WorldView-2 sensors. The plots were
located in the field based on each satellite pixel grid to ensure the
alignment between remote sensing and field data using a sub-meter
accuracy GPS receiver. The last year of the remote sensing time series
after the fire was chosen to validate the FVC estimates since it would
exhibit the highest post-fire recovery. We followed a random stratified
design, using the surface occupied by the four fire recurrence and se-
verity categories as strata. FVC was measured in each field plot as the
percentage of total vegetation cover (i.e. vertical projected area occu-
pied by herbaceous, shrub and pine seedling strata to the total plot
extent; Anderson et al., 2005, Calvo et al., 2008; Delamater et al.,
2012). Bivariate Pearson correlations and RMSE were computed be-
tween the FVC remote sensing estimates and FVC field data.

3. Results

3.1. Estimation of FVC using the dimidiate pixel model

The FVC time series computed from very high spatial resolution
WorldView-2 imagery using the dimidiate pixel model showed a sub-
stantial decrease after the forest fire disturbance (August 2012) for each
fire recurrence and severity category (Fig. 2). The highest post-fire FVC
recovery was found at the categories of high fire recurrence and se-
verity, pre-fire FVC almost being reached four years after fire. Re-
garding pre-fire conditions, FVC computed from WorldView-2 NDVI
(Fig. 2A) was approximately 10% lower than that estimated from RE-
NDVI (Fig. 2B) for the low fire recurrence categories, under a high
canopy density.
The FVC time series derived from Landsat using the dimidiate pixel

model (Fig. 3) followed almost the same pattern as those obtained from
WorldView NDVI at all categories of recurrence and severity. However,
for the entire time series, the Landsat derived FVC was slightly lower
(between 1 and 20%) than the computed from WorldView-2 NDVI. The

difference in the estimated fractional cover was also smaller between
fire recurrence and severity categories.
The accuracy of the dimidiate pixel model with regard to the FVC

field measurements for the fourth year after the fire was considerably
higher for WorldView-2 NDVI and RENDVI based estimates (Fig. 4 and
Table 3) than for Landsat OLI NDVI (Fig. 5 and Table 3). The linear
relationships assumed for validation purposes were statistically sig-
nificant at p < 0.001. WorldView-2 RENDVI based estimates predicted
FVC with high accuracy for the full range of field-sampled vegetation
cover. However, the model based on NDVI calculated from both
Landsat OLI and WorldView-2 underestimated FVC at high field-sam-
pled vegetation cover (field-sampled FVC > 80%) (Fig. 4 and Fig. 5).

3.2. Estimation of fractional vegetation cover (FVC) using multiple
endmember spectral mixture analysis (MESMA)

Spectral unmixing achieved an average percentage of classified
pixels of 93.4% and 91.8% for the WorldView-2 and Landsat imagery
time series, respectively. The iterative endmember selection (IES)
technique selected nine endmembers which included five photo-
synthetic vegetation (PV) spectra, two non-photosynthetic vegetation
(NPV) spectra and five soil spectra for the WorldView-2 imagery
(Table 4). Landsat imagery was unmixed with seven endmembers se-
lected by the IES technique which included four PV spectra, one NPV
spectra and three soil spectra (Table 4). See Fig. 6 for an example of the
spectral signatures separability of the endmembers grouped in each
spectral library.

Fig. 2. FVC time series estimated through the dimidiate pixel model from WorldView-2 NDVI (A) and RENDVI (B) in different fire recurrence and severity categories.

Fig. 3. FVC time series estimated through the dimidiate pixel model from
Landsat (ETM+ and OLI) NDVI in fire recurrence and severity categories.
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FVC computed from the photosynthetic vegetation endmember
fraction in the MESMA model for WorldView-2 and Landsat imagery
(Fig. 7A and B) followed the same temporal pattern as the FVC time

series estimated through the dimidiate pixel model. In the MESMA
model, however, for low fire recurrence categories and pre-fire condi-
tions, the estimated fraction of photosynthetic vegetation was ap-
proximately the same for WorldView-2 and Landsat ETM+.
The linear relationships between field-sampled and estimated FVC

values from the MESMA model based on WorldView-2 and Landsat OLI
were statistically significant at p < 0.0001. The accuracy of the
MESMA model was considerably higher than that of the dimidiate pixel
model. Although the FVC estimates from MESMA were accurate for the
entire range of field-sampled vegetation cover for both sensors, the
WorldView-2 derived fraction of photosynthetic vegetation had a
higher performance (Fig. 8 and Table 5) than the fraction derived from
Landsat OLI (Fig. 9 and Table 5) in terms of R2 and RMSE.

Fig. 4. Relationship between field-sampled and estimated FVC values from the dimidiate pixel model based on WorldView-2 NDVI and RENDVI.

Table 3
Root mean square error (RMSE) values between field-sampled and estimated
FVC values from the dimidiate pixel model based on WorldView-2 NDVI/
RENDVI and Landsat OLI NDVI.

Dimidiate pixel model WV2 NDVI WV2 RENDVI L-OLI NDVI

Low recurrence - Low severity 9.11 7.91 13.27
Low recurrence - High severity 9.03 7.88 12.61
High recurrence - Low severity 7.00 6.03 11.64
High recurrence - High severity 7.16 6.43 12.32
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4. Discussion

FVC is an essential biophysical parameter that allows the quanti-
tative characterization of vegetation communities in the assessment of
post-fire forest recovery (Zhang et al., 2013; Meng et al., 2018).
Knowledge of post-fire vegetation trajectories considering the fire re-
gime is key for understanding the resilience of communities to present
and future disturbances (Yang et al., 2017). Our study demonstrated the
potentiality of multi-scale remote sensing techniques to measure post-
fire resilience under different fire regime categories. We found that,
WorldView-2 satellite imagery outperformed Landsat in the quantita-
tive estimation of FVC in highly heterogeneous landscapes. Ad-
ditionally, the MESMA model performed better in the vegetation frac-
tion extraction than the dimidiate pixel model based on vegetation
indices for the considered remote sensing data. The FVC time series
accounting for pre- and post-fire conditions showed the same general
pattern in the estimations made at both spatial resolutions and mod-
eling approaches (dimidiate pixel model and MESMA). The categories
defined by a high fire recurrence were associated to the highest post-
fire recovery, reaching almost pre-fire FVC four years after fire. In these
categories, pre-fire vegetation cover was mainly constituted by re-
sprouter shrubs and herbaceous species (Fernández-García et al.,
2018b), which show fast post-fire recovery rates and are promoted by

recurrent fires (Pausas, 1999; Calvo et al., 2008; Taboada et al., 2017).
By contrast, after the occurrence of the stand-replacing fire, the mature
pine stand that was present in low fire recurrence scenarios (Fernández-
García et al., 2018b) needs more years to reach the cover values ob-
served in pre-fire conditions (Rodrigo et al., 2004). Indeed, looking at
the pre-fire conditions in the low recurrence categories, under vigorous
pine and oak canopy density, the dimidiate pixel models based on NDVI
yielded lower FVC estimates than those based on the red edge NDVI
(RENDVI) as spectral response. This result could be related to the sa-
turation effect that vegetation indices computed from red and NIR re-
gions of the electromagnetic spectrum asymptotically reach under
dense vegetation with high biomass or leaf area index (Tucker 1977;
Mutanga and Skidmore, 2004; Chen et al., 2009). When the ecosystem
reaches its biomass production peak, which in our study area occurs in
summer (Hedlund et al., 2003), the red light absorbed by the vegetation
canopy reaches its maximum level, while NIR reflectance steadily in-
creases because of the multiple scattering of canopy from dense vege-
tation (Mutanga et al., 2012; Zhu et al., 2017). The use of spectral in-
dices, such as RENDVI, can overcome the saturation effect (Mutanga
et al., 2012) given the higher sensitivity of the red edge region to
changes in vegetation biochemical and biophysical parameters (Zhu
et al., 2017; Xie et al., 2018), such as chlorophyll content.
The lowest overall FVC values and the smallest differences in FVC

between fire recurrence categories, estimated through the dimidiate
pixel model using Landsat NDVI, may be caused by a land cover ag-
gregation effect at coarse spatial resolution in our spatially hetero-
geneous study area. Several studies have highlighted a progressive
decrease in NDVI range and mean as less extreme values are detected at
coarser spatial resolutions (Stefanov and Netzband, 2005; Sprintsin
et al., 2007). For their part, Munyati and Mboweni (2013) found that
healthy small vegetation patches presented a decreasing trend in mean
NDVI values with increasingly coarser spatial resolution imagery. This
effect could have led to an overestimation of the mean Landsat NDVIs
parameter and an underestimation of FVC (Ding et al., 2016). The
overall accuracy of the dimidiate pixel model with regard to FVC field
measurements using Landsat NDVI as spectral response (10–15% in
terms of RMSE) was similar to that achieved in several studies using
sensors at moderate or low spatial resolution (Xiao and Moody, 2005;
Jiménez-Muñoz et al., 2009; Jiapaer et al., 2011; Zhang et al., 2013). In

Fig. 5. Relationship between field-sampled and estimated FVC values from the dimidiate pixel model based on Landsat OLI NDVI.

Table 4
Photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and soil
endmembers selected for the WorldView-2 and Landsat imagery.

PV spectral library WorldView-2 No. of
endmembers

Landsat No. of
endmembers

Pinus pinaster 2 2
Quercus sp. 2 1
Shrub 1 1
NPV spectral library
Woody debris 1 1
Charred logs 1 0
Soil spectral library
Forest track 1 1
Soil 1 2 1
Soil 2 1 0
Rock 1 1
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our study, the use of very high spatial resolution imagery substantially
improved the model accuracy (5–10% in terms of RMSE), especially
when using RENDVI as spectral signal. Since this spectral index is more
sensitive to changes in vegetation biophysical parameters than NDVI
and can prevent the saturation effect (Mutanga et al., 2012; Zhu et al.,
2017; Xie et al., 2018), FVC was not underestimated at high vegetation
cover on pre-fire conditions. Despite this effect, the linear relationship

between the FVC estimated from NDVI and the field-sampled FVC was
statistically significant, as other studies have found (Jiapaer et al.,
2011; Song et al., 2017). Some authors propose methods with high
uncertainty (Zeng et al., 2000) to estimate (RE)NDVIv and (RE)NDVIs
parameters, such as image statistics (maximum and minimum spectral
index values over a study area or time series; Gutman and Ignalov,
1998) or averages of vegetation and soil samples of spectral libraries

Fig. 6. Example of WorldView-2 (A) and Landsat (B) endmembers spectra.

Fig. 7. FVC time series estimated through the multiple endmember spectral mixture analysis (MESMA) model from WorldView-2 (A) and Landsat ETM+ and OLI (B)
imagery under fire recurrence and severity categories.
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(Jiménez-Muñoz et al., 2009). However, the definition of (RE)NDVIv
and (RE)NDVIs parameters in this research using high spatial resolution
satellite imagery together with field knowledge could avoid the con-
tribution of litter, shadows and other non-interest ground features to
the spectral signal of pure vegetation and bare soil training areas
(Montandon and Small, 2008; Kouchi et al., 2013; Melville et al., 2019).
Despite the good performance obtained with the dimidiate pixel model
in estimating FVC from very high spatial resolution satellite imagery,
there might be potential constraints to its implementation in more ex-
tensive regions than the study area. First, the (RE)NDVIs parameter
could vary substantially among different soil types (Montandon and
Small, 2008) because of their mineral composition, organic matter
content or moisture (Ding et al., 2016). Thus, in extensive areas with

Fig. 8. Relationship between field-sampled and estimated FVC values from the multiple endmember spectral mixture analysis (MESMA) model for WorldView-2.

Table 5
Root mean square error (RMSE) values between field-sampled and estimated
FVC values from the multiple endmember spectral mixture analysis (MESMA)
model for WorldView-2 and Landsat OLI.

MESMA WV2 L-OLI

Low recurrence - Low severity 5.1354 7.1546
Low recurrence - High severity 5.3777 7.8885
High recurrence - Low severity 4.4283 6.5495
High recurrence - High severity 5.5957 7.8693

Fig. 9. Relationship between field-sampled and estimated FVC values from the multiple endmember spectral mixture analysis (MESMA) model for Landsat OLI.
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large environmental gradients, soil spectra could exhibit excessive
variability to properly characterize it using a single parameter (Xiao
and Moody, 2005). The same assumption could be applied for the
characterization of vegetation variability with the (RE)NDVIv para-
meter over large areas. Indeed, this parameter varies across time and
space because of seasonal changes in the vegetation canopy and back-
ground soil signal (Mu et al., 2018). Second, the FVC estimation over
extensive regions using very high spatial resolution satellite imagery
could be constrained due to the high cost per scene of commercial sa-
tellite imagery (Nichol et al., 2006; Zhou et al., 2013).
The results obtained in this paper showed that MESMA is an effec-

tive approach for monitoring resilience in fire-prone ecosystems
(Fernandez-Manso et al., 2016; Meng et al., 2018). The average per-
centage of classified pixels for WorldView-2 and Landsat imagery was
high considering that the same spectral library was used to unmix more
than one scene (Fernandez-Manso et al., 2016). The accuracy of
MESMA photosynthetic vegetation (PV) fraction estimation with regard
to FVC field measurements for Landsat (6–8% in terms of RMSE) and
WorldView-2 (4–6% in terms of RMSE) imagery was remarkably higher
than that obtained from the dimidiate pixel model. This could be due to
the physical meaning of the PV fraction image, which improve its re-
lation with field data (Quintano et al., 2013), and the spectral re-
presentability of the selected endmembers (Tane et al., 2018) through
the Iterative Endmember Selection (IES) technique. Moreover, in the
MESMA model, all available reflectance bands of each sensor are used
to unmix the imagery, instead of using two bands as most common
spectral indices do (Fernandez-Manso et al., 2016), and the background
influence of non-vegetation components is minimized (Xiao and
Moody, 2005). Hence, MESMA unmixing could better capture the
ground spectra variability of heterogeneous burned areas than other
spectral unmixing methods that use a limited number of endmembers
(Xiao and Moody, 2005). In addition, MESMA did not underestimate
FVC at high canopy density in pre-fire conditions with any remote
sensing data. Twele (2004) also highlighted that the saturation effect
observed for vegetation indices based on the red and NIR regions is
avoided with spectral mixture analysis techniques. As stated by Tane
et al. (2018), a linear relationship was found between the PV fraction
and the field-sampled FVC in this study. The overall accuracy of the
MESMA modeled fraction of PV for Landsat (6–8% in terms of RMSE)
was in line with that reported in previous studies using moderate or low
spatial resolution satellite imagery (Powell et al., 2007; Veraverbeke
et al., 2012; Okin et al., 2013; Fan and Deng, 2014). PV fraction esti-
mation using WorldView-2 slightly improved the overall model accu-
racy to an RMSE between 4 and 6%, in every fire recurrence-severity
category. The delineation of more spectrally pure endmembers with
very high spatial resolution satellite imagery has led to an increase in
the accuracy of the unmixing approach (Melville et al., 2019). The use
of remote sensing data at high spatial resolution under a MESMA un-
mixing approach could be applicable over extensive regions with high
environmental gradients as long as the candidate endmembers are
properly defined (Quintano et al., 2017). However, it should be as-
sessed whether the slight increase in MESMA model accuracy when
using remote sensing data at very high spatial resolution compensates
for the higher economic costs of the imagery.

5. Conclusions

1. Our study highlights the strengths and weaknesses of high and
moderate spatial resolution satellite imagery for estimating frac-
tional vegetation cover (FCV) in fire-prone pine ecosystems in order
to monitor post-fire forest resilience under different fire recurrence
and severity categories.

2. In the study area, the highest resilience of vegetation in terms of
post-fire FVC recovery corresponds to the high fire recurrence and
severity categories.

3. The use of very high spatial resolution satellite imagery to estimate

FVC on the basis of the dimidiate pixel model improves model ac-
curacy, particularly when using red edge-NDVI (RENDVI) as spectral
signal given the high sensitivity of the red edge region of the spec-
trum to variability in vegetation biophysical parameters. Moreover,
the definition of pure green vegetation and bare soil spectral re-
sponses with very high spatial resolution satellite imagery would
incorporate small background contributions from non-interest
ground features in a heterogeneous landscape.

4. Moderate spatial resolution satellite imagery led to an under-
estimation of FVC when using the dimidiate pixel model because of
a land cover aggregation effect.

5. The physical sense of the MESMA model, together with the mini-
mization of the background influence of non-vegetation compo-
nents, led to a better characterization of the ground spectra varia-
bility than the dimidiate pixel model in a heterogeneous burned
area. MESMA improves the accuracy of the vegetation fraction ex-
traction using very high spatial resolution satellite imagery under all
considered fire recurrence-severity categories, probably due to the
delineation of more spectrally pure endmembers than using coarse
resolution remote sensing data.
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