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A B S T R A C T

Burn severity mapping greatly informs fire management and can be used to predict post-fire vegetation recovery.
Satellite remote sensing is a cost-effective method for estimating burn severity, providing a comprehensive
spatially explicit view of whole landscapes. However, the proportion of tree canopy cover (TCC) affects the
reflectance signal, obscuring background char and ash. Consequently, traditional optical satellite remote sensing
methods that do not account for variation in TCC misclassify burn severity, especially in areas with extremely
low or high TCC. In this study, TCC data served to parameterize and constrain the inversion of the Forest
Reflectance and Transmittance (FRT) radiative transfer model (RTM) to alleviate spectral confusion when re-
trieving burn severity. The methodology was evaluated using field measurements of burn severity for a series of
wildfires in the fire-prone tropical savannas of northern Australia and the western United States. Burn severity
classes were used for Australia while the Composite Burn Index (CBI) for US. Reflectance data from Sentinel-2A
Multi-Spectral Instrument (MSI) and Landsat-5 Thematic Mapper (TM) corresponding to post-fire field survey
dates were used to retrieve burn severity using FRT RTM (with and without using TCC information in its
parameterization and inversion) and two standard empirical burn indices, dNBR and RdNBR, for comparison.
Using FRT RTM without TCC constraint produced an overestimation for low burn severity in regions with low
TCC and an underestimation for moderate and high burn severity in regions with high TCC. Burn severity
estimation accuracy significantly improved by integrating TCC in the parameterization and inversion of FRT
RTM. The overall accuracy in northern Australia increased from 65% to 81%, and the kappa coefficient in-
creased from 0.35 to 0.55. In the western United States, R2 between estimated and observed CBI, increased from
0.33 to 0.54, root mean square error (RMSE) reduced from 0.53 to 0.43, and in all instances, the method
performed better than dNBR and RdNBR. The method used in this study achieved more accurate burn severity
mapping, thus assisting land managers to better understand post-fire vegetation resilience and forest manage-
ment.

1. Introduction

Wildfire is a major disturbance agent in terrestrial ecosystems
worldwide, leading to changes in vegetation carbon stocks and influ-
encing the temporal variability in carbon, water and energy fluxes
(Bowman et al., 2009; Chuvieco, 2009; Flannigan et al., 2000). Burn
severity is defined as the impact of fire on soil and vegetation in a given
sampling area (Chuvieco et al., 2006; Edwards et al., 2013). Accurate

measurement of burn severity is critical to quantifying fire impact on
key ecological processes (e.g. tree mortality, post-fire recovery, and
intra-species/inter-species competition), and essential for post-fire
forest management activities (Frolking et al., 2009; Lentile et al., 2006).

Different approaches have been developed to evaluate burn se-
verity, through field surveys and methods based on remote sensing.
Field surveys are based on quantitative or qualitative assessments of
post-fire soil and vegetation conditions. The Composite Burn Index
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(CBI) (Key and Benson, 2006) and the GeoCBI (De Santis and Chuvieco,
2009) are common ground-based severity indices. CBI has continuous
values ranging from 0 (unburned) to 3 (completely burned). GeoCBI is a
modified version of CBI that computes the burn severity of a plot ac-
counting for the fraction of cover (FCOV) of each vegetation strata.
GeoCBI is, therefore, better adapted to remotely sensed data (De Santis
and Chuvieco, 2009). However, GeoCBI has the risk of increasing the
area of moderate and high burn severity in sparse tree covered area.
Consider for example, a place where middle and lower shrubs and
grasslands are dense but trees are sparse. If only the grasslands and
shrubs are burned (while the upper trees are not), according to the
criterion of GeoCBI, the burning ratio of grasslands and shrubs will
occupy a higher weight for their higher fractional cover. GeoCBI will
yield a high value when in fact the area belongs at a lower burn severity
level.

In contrast to field survey methods, using remotely sensed data is
much more cost-efficient and provides a comprehensive spatial cov-
erage (Chuvieco, 2009; Chuvieco et al., 2007). The methods for burn
severity estimation based on passive optical remote sensing techniques
can be divided into four categories:

(i) Empirical statistical models. The most commonly used spectral
indices include the Normalized Burn Ratio (NBR) (Roy et al.,
2006), the differenced NBR (dNBR) (Miller and Thode, 2007), and
the Relative dNBR (RdNBR) (Miller et al., 2009). Spectral indices
have been widely used due to their simple calculation and spatially
extensive applicability. However, they lack physical meaning, re-
quire extensive local calibration for accuracy, and do not make use
of the full spectrum available (De Santis et al., 2010).

(ii) Spectral Mixture Analysis (SMA) methods. In these methods, post-
fire burn severity is estimated by solving sub-pixel mixing
(Fernandez-Manso et al., 2016b; Quintano et al., 2017; Quintano
et al., 2013). An advantage is their use of all spectral bands from
one single post-fire image (Sunderman and Weisberg, 2011), but
this is limited by the need for an extensive, site-specific end-
member library (Edwards et al., 2018).

(iii) Random forest regression. The random forest classifier has been
found to be suited for burn severity mapping as it can consider
multiple environmental variables simultaneously (Hultquist et al.,
2014). However, classification accuracy strongly relies on the se-
lection of the training data, and the classification results are gen-
erally site-specific (Collins et al., 2018).

(iv) Radiative transfer models (RTMs). RTMs are firstly ‘forward’ ap-
plied to simulate reflectance and transmittance at leaf and canopy
levels corresponding to specific burn severity levels, expressed for
example using CBI or GeoCBI. In a subsequent step, surface re-
flectance extracted from remotely sensed data is used to estimate

the biophysical and biochemical variables of the vegetation that
determined a certain CBI or GeoCBI value (De Santis et al. 2009,
2010). The model selected to simulate the reflectance should be
sensitive to burn severity variations in different vegetation layers
since CBI and GeoCBI scores consider five strata (Chuvieco et al.,
2007). Chuvieco et al. (2006) initially used the Kuusk Markov
Chain Canopy Reflectance Model (MCRM) (Kuusk, 1995) for burn
severity estimation as this model considers two vegetation ca-
nopies. However, MCRM assumes a uniform turbid medium, which
is not suitable over forested areas. In response, De Santis et al.
(2009) suggested using the geometric RTM GeoSAIL model, which
describes forest canopy closer to reality. RTM inversion methods
have a better universality than empirical models, but RTM para-
meterization is challenging (Yebra et al., 2018).

For its continuous accessibility and its easy interpretation, we
mainly focus on burn severity estimation using optical remote sensing
data. Any of the previously presented methods that retrieve burn se-
verity using a single optical post-fire satellite image share a limitation
in that they increase the proportion of high burn severity classes in
regions with low tree canopy cover (TCC), and underestimate burn
severity in regions with dense tree canopy cover (Miller et al., 2009).
Dead leaf litter and charcoal will have a different contribution to the
signal received by remote sensing sensors with TCC variation. For ex-
ample, given two plots with the same low burn severity (only unders-
tory vegetation burned) but different TCC level (Fig. 1a and b), the
background char and dead litter will contribute more to the observed
spectral signal for the plot with lower TCC (Fig. 1a) than for the plot
with higher TCC (Fig. 1b). This will result in an overestimation of burn
severity in the situation of lower TCC (Fig. 1a). Conversely, for plots
with the same medium burn severity (Fig. 1c and d), if the TCC is ex-
tremely high (Fig. 1d), the spectral signal from the background will be
obscured by the green tree canopy, leading to an underestimation of the
burn severity. Therefore, the same burn severity could correspond to
different spectral signatures and the same spectral signature could
correspond to different levels of burn severity with the variation of TCC.
Consequently, the proportion of TCC plays an important role in relating
reflectance to burn severity, and thus should be considered in RTM
parameterization and backward inversion, however, this issue has been
not addressed in previous studies.

In this study, we aim to develop a more accurate RTM-based method
to solve the errors in burn severity estimation caused by TCC variation
by considering TCC in the parameterization and backward inversion of
FRT RTM (RTM + TCC). The value of this approach is demonstrated
when comparing the results to those obtained using the traditional RTM
Global Optimal Search (RTM + GOS) method. Several fire-affected
regions across northern Australia and in the western United States were

Fig. 1. Sketch map of the influence of tree canopy cover
(TCC) on burn severity estimation from optical remote
sensing techniques: (a) and (b) represent low burn se-
verity with low and medium TCC, respectively; (c) and
(d) represent medium burn severity with medium and
high TCC, respectively. A lower TCC in (a) will result in
an overestimation of burn severity while a higher TCC in
(d) will result in an underestimation.
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selected to verify the validity and universality of the proposed method
on solving spectral confusion errors in sparse and dense tree-covered
areas.

2. Materials and methods

2.1. Study area and data sampling

Spectral confusion between burn severity levels generally occurs in
regions with both sparse and dense tree canopy layers and leads to
errors in burn severity mapping. We carefully selected our study areas

to contain different vegetation types with very different TCC (northern
Australia, sparse tree cover, and western United States, dense tree
cover) to better test our methodology to reduce the influence of TCC
variation on burn severity retrieval and comprehensively verify the
validity and universality of our method. The first study area includes
two study sites and is located in the tropical savannas of northern
Australia (Fig. 2, Table 1). Australia's tropical savannas cover 1.9 mil-
lion km2, approximately 25% of the continent, and are comprised of
open woodlands, woodlands and open forests (Edwards et al., 2018).
Fires in northern Australia generally ignite during the dry season
months (approximately May to October) with little or no rain, relatively

Fig. 2. Location of the six study sites and field plots. The background map used in the top two maps is the percent tree canopy cover (TCC) extracted from the MODIS
Vegetation Continuous Fields product of 2015–2016 for northern Australia and 2007–2008 for the western United States. Image maps are false color composites
(SWIR2, NIR, and red bands) of post-fire Sentinel-2A MSI (maps 1 and 2) and Landsat-5 TM (maps 3 to 6) and show the location of the field plots for each of the six
study sites. The western United States fire perimeters were provided by the USGS Monitoring Trends in Burn Severity (MTBS) project. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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low humidity and high temperatures (Gill et al., 1996). The dry season
months can be further separated into early dry season (EDS) (ap-
proximately May to July) and late dry season (LDS) (approximately
August to October). Fires occurring during the EDS are patchier and less
severe, while the LDS fires are more intense and severe (Edwards et al.,
2018). Study site 1 experienced LDS (August to middle October 2016)
fires while site 2 experienced EDS fires (June to late July 2016). Post-
fire field sampling was carried out on about one-week after the fires (19
October 2016 and 27 July 2016 for sites 1 and 2, respectively), using
the savanna rapid assessment technique of Edwards et al. (2013). The
burn severity is classified into five categories considering the degree of
charring and scorching of photosynthetic and non-photosynthetic plant
material in the different strata: (a) PATCHY (small trees and shrubs
scorched to 2m,< 80% burnt ground layer patchiness); (b) LOW (small
trees and shrubs scorched to 2m,>80% burnt ground layer

patchiness); (c) MODERATE (scorched leaves through the mid-storey
(> 2 and <8m) perhaps into the lower parts of the upper canopy); (d)
HIGH (complete canopy scorch) and; (e) EXTREME (all foliage removed
or charred). The burn severity of the two study sites in northern Aus-
tralian savanna was classified into severe (SV) and not-severe (NSV) as
simply differentiating “Severe” from “Not-Severe” fire-affected areas
can provide adequate and more accurate information for fire manage-
ment (Edwards et al. 2013, 2018).Conseqeutnly, the “patchy”, “low”
and “moderate” burnt level were merged as “NSV” burnt level while the
“high” and “extreme” were merged as “SV” burnt level. There was a
total of 303 (SV: 182; NSV: 121) and 179 (SV: 16; NSV: 163) field plots
for study sites 1 and 2, respectively.

The second study area includes four study sites in the western
United States (Fig. 2), including 15 fires that occurred across three
states (Fig. 2, Table 1). The vegetation types in these four study sites is

Table 1
List of fires in northern Australia and the western United States used in the study. Fire date represents the time when the fire started. TCC (%) is derived from the pre-
fire MODIS Vegetation Continuous Fields product and represents the tree canopy cover range of the fire region.

Fire name State Fire date Field survey date Vegetation type TCC (%)

Daly Northern Territory 2016/08/21 2016/10/19 savanna 2–14
Victoria Northern Territory 2016/09/01 2016/10/19 savanna 3–10
Elsey Northern Territory 2016/10/01 2016/10/19 savanna 2–14
Cook Queensland 2016/06/26 2016/07/27 savanna 2–34
Schultz Arizona 2010/06/20 2011/08/01 coniferous forests 19–48
Ranger Complex Arizona 2010/07/17 2011/08/03 coniferous forests 30–43
Eagle Rock Arizona 2010/06/11 2011/07/30 coniferous forests 16–40
Hobble Arizona 2010/08/30 2011/07/31 coniferous forests 9–25
Shu Lightning California 2008/06/21 2009/10/31 coniferous forests 13–53
Iron Complex California 2008/06/21 2009/11/01 coniferous forests 43–74
Lime Complex California 2008/06/21 2009/11/01 coniferous forests 57–68
Gulch California 2008/09/07 2009/11/01 savanna 15–34
Indian California 2010/07/18 2011/08/13 open shrublands 2–11
Bull California 2010/07/26 2011/08/14 savanna 3–18
Canyon California 2010/09/12 2011/08/05 savanna 4–12
Crown California 2010/07/29 2011/08/17 savanna 6–18
Swanson Lake Washington 2008/08/18 2009/10/20 coniferous forests 2–20
Columbia River Road Washington 2008/08/07 2009/10/22 coniferous forests 6–48
Smith Lake Washington 2008/08/02 2009/10/23 savanna 2–4

Fig. 3. Frequency distribution histograms of the pre-fire TCC (%) of the six study sites in northern Australia (a and b) and the western United States (c to f).
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comprised of deciduous and coniferous forests, savannas, shrublands,
and grasslands. The field data of the western United States is a public
dataset of the United States Department of Agriculture (USDA), which
was funded by the Joint Fire Sciences Program (Addison and Oommen,
2018; Sikkink et al., 2013). The burn severity of these study sites was
assessed using the CBI from 2009 to 2011 (about one-year post-fire).
The fire perimeters of the western United States were provided by the
Monitoring Trends in Burn Severity (MTBS, https://www.mtbs.gov/,
last access 13/08/2019). MTBS is an interagency program whose goal is
to consistently map the burn severity and extent of large fires across all
lands of the United States from 1984 to the present. In this study, a total
of 227 field plots were selected after removing non-tree plots and plots
that appeared covered by cloud and cloud shadow in the corresponding
satellite imagery.

The frequency distribution of percent TCC in the field plots of the six
study sites was calculated (Fig. 3). In the two northern Australia study
sites TCC is low, for example, TCC of the vast majority of study site 1 is
less than 10%. The sparse tree distribution made it difficult to classify
the burn severity. By contrast, TCC of the western United States study
sites is much higher, with the highest TCC being in study site 3, where it
reaches 70%.

2.2. Satellite data and processing

2.2.1. Reflectance data
The fires in the western United States were ignited from 2008 to

2010. Therefore, Landsat-5 Thematic Mapper (TM) data were used. In
northern Australia, Sentinel-2A Multi-Spectral Instrument (MSI) data
were preferred, for three main reasons: firstly, the acquisition dates of
the Sentinel-2A MSI data were closer to the field survey time; secondly,
the cloud cover was lower than in the Landsat-8 OLI imagery and;
thirdly, compared to Landsat-5 TM, Sentinel-2A MSI provides in-
formation in three Vegetation Red Edge (VRE) bands that are suitable
for discriminating burn severity (Fernández-Manso et al. 2016a).

The Sentinel-2A satellite carries a single MSI with 13 spectral
channels in the visible/near infrared (VNIR) and shortwave infrared
(SWIR) spectral range. In this study, nine spectral bands from the
visible (VIS) to SWIR bands (bands 2–8a and bands 11 & 12) and post-
fire NBR were used for estimating burn severity at the northern
Australia tropical savanna study sites. Data were acquired for study site
1 and study site 2 on 24 October 2016 and 03 August 2016, respec-
tively. The spatial resolution of the nine spectral bands was unified to
20m. Sentinel-2A MSI data were downloaded from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/, last access 13/08/
2019). The atmospheric correction of Sentinel-2A MSI data was im-
plemented using the Sen2Cor Tool (version 2.3.1) (Gascon et al., 2017;
Louis et al., 2016), converting Level-1C to Level-2A Bottom-of-Atmo-
sphere (BOA) reflectance, using the Sen2Cor default parameters.
Sen2Cor has two main modules, the Scene Classification (SCL) module
and the Atmospheric Correction (AC) module (Main-Knorn et al.,
2017). The AC is performed using a set of LUTs generated via libRad-
tran (Mayer and Kylling, 2005). In AC, the configuration parameters
include: (1) aerosol type; (2) atmosphere type; (3) ozone content.
Aerosol type can be selected as rural or maritime (the default is rural).
There are 2 atmosphere types (mid-latitude summer or mid-latitude
winter), which are selected automatically by Sen2Cor according to the
scene geographic location and climatology (Main-Knorn et al., 2017).
Ozone content is also selected automatically by Sen2Cor.

Landsat-5 TM surface reflectance and post-fire NBR data were used
in the western United States. The surface reflectance product of
Landsat-5 TM was downloaded from USGS Earth Explorer (https://
earthexplorer.usgs.gov/, last access 13/08/2019) and generated from
the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS), specialized software originally developed through NASA's
Making Earth System Data Records for Use in Research Environments
(MEaSUREs) (Masek et al., 2006). The clouds and shadows of both

Landsat-5 and Sentinel-2 data were detected and masked using the
Fmask algorithm (Zhu et al., 2015; Zhu and Woodcock, 2012; Qiu et al.,
2018). The pre and post-fire images were selected according to the fire
ignition and field collection date.

2.2.2. MODIS Vegetation Continuous Fields data
The pre-fire TCC data should be as close as possible to the fire ig-

nition date to accurately describe the TCC condition before fire.
Therefore, the MOD44B Version 6 Vegetation Continuous Fields (VCF)
product was used for its high temporal resolution compared with other
TCC product. MODIS VCF is a global representation of surface vegeta-
tion cover as gradations of three ground cover components: percentage
of tree cover, non-tree cover, and non-vegetated (bare) (Carroll et al.,
2010). VCF products provide a continuous, quantitative description of
land surface cover at 250m spatial resolution, with a sub-pixel depic-
tion of the percentage of cover of the three ground cover components
(DiMiceli et al., 2011). VCF products were accessed from NASA
Earthdata Search (https://search.earthdata.nasa.gov/, last access 13/
08/2019). The TCC layer of one year before the different fires occurred
was used to parameterize and constrain the RTM. MODIS VCF data of
the two study areas were resampled to 20m and 30m to maintain
uniform spatial resolution with Sentinel-2A MSI and Landsat-5 TM data,
respectively, using nearest-neighbor interpolation. In future work we
would explore the use of pre-fire TCC products with higher spatial re-
solution as auxiliary data to assess the influence of spatial resolution on
the accuracy of burn severity estimation. The TCC maps show that the
majority of the TCC of northern Australia tropical savannas is relatively
low (≤30%) while the TCC of the study sites in the western United
States is higher (even over 70%) (Table 1, Fig. 3).

2.3. Retrieval of burn severity using FRT RTM

The methodology to retrieve burn severity is illustrated in Fig. 4.
Four consecutive phases were carried out to estimate burn severity
based on RTM: (i) model selection to simulate the reflectance corre-
sponding to different burn severities; (ii) sensitivity analysis to ascer-
tain the sensitive parameters for burn severity simulation; (iii) forward
modeling, which includes the parameterization of the RTM based on the
sensitivity analysis results and generation of the look-up table (LUT);
and (iv) RTM model inversion by finding the simulated spectral re-
flectance spectrum (stored in the LUT) that best matches the observed
spectrum using a merit function.

2.3.1. Model selection
FRT RTM (version 04.2013) (Kuusk and Nilson, 2000) was selected

for burn severity estimation. FRT is a directional multispectral forest
reflectance model in the optical domain of radiation 400–2400 nm with
1 nm spectral resolution. The model assumes that forest canopies con-
sist of three layers: a discontinuous upper canopy of trees in the
overstory, a continuous homogeneous shrub layer in the middle layer,
and a grass layer overlying the soil surface (Kuusk et al., 2014). The
forest scene is divided into four parts: the illuminated canopy, the il-
luminated ground vegetation, the sheltered canopy and the sheltered
ground vegetation. The radiances of these elements are estimated based
on geometrical and radiative transfer concepts. Tree crown shapes are
modeled as rotating ellipsoid or cones in the upper and cylinders in the
lower part. Leaves and branches are spherical uniformly distributed in
the crown. The two-layer homogeneous canopy reflectance model
ACRM by Kuusk (2001) is applied for the calculation of the bidirec-
tional reflectance of ground vegetation (Kuusk and Nilson, 2002). FRT
was expected to be suitable for burn severity estimation derived ac-
cording to the condition of these three vegetation strata. A full list of
vegetation parameters used in the FRT model is presented in Table 2.
The PROSPECT model (Jacquemoud and Baret, 1990) was coupled into
FRT RTM to simulate leaf-level reflectance and transmittance. The valid
range and default value of each vegetation parameter were assigned
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based on the FRT user guide (Kuusk and Nilson, 2002).

2.3.2. EFAST sensitivity analysis
Sensitivity analysis is one of the most effective tools to ascertain the

key parameters and improve operating efficiencies of an RTM by
helping to select the variables that can be fixed and with that decrease
the number of simulations in the LUT. In this study, the Extended
Fourier Amplitude Sensitivity Test (EFAST) method was used to quan-
tify the importance of the input parameters to the modeled spectra.
EFAST sensitivity is robust and efficient for multi-parameter nonlinear
complex models (Wang et al., 2013) and has been widely used in hy-
drological, ecological, and meteorological modeling. It combines the
Fourier Amplitude Sensitivity (FAST) algorithm and Sobol algorithm
(Nossent et al., 2011). The EFAST sensitivity analysis included sampling
and sensitivity index calculation. The main sensitivity index can be
obtained using the EFAST analysis method, which reflected the con-
tribution of each input parameter to the model outputs with all test
parameters changing simultaneously.

The sensitivity of the FRT model input parameters was represented
by the total sensitivity index (TSI) calculated from the EFAST algorithm
(Fig. 5). In full spectral bands inversion, each spectral domain from VIS
to SWIR contributed to the burn severity estimation. Therefore, the TSI
calculation was separated into four parts, VIS (Fig. 5a), NIR (Fig. 5b),
SWIR (Fig. 5c), and mean TSI of all spectral bands (Fig. 5d). The input-
sensitive parameters were selected in different vegetation layers ac-
cording to the average TSI for all spectral regions because the CBI was
evaluated by considering several vegetation layers. The most sensitive
structure parameters of the three vegetation layers (upper story: stand
density (sd), BAI/LAI, crown radius (cr); middle story: LAI2; and un-
derstory: LAI1), together with SLW (SLW3, SWL2 and SLW1), as the
most sensitive biochemical parameter, for each vegetation strata were
selected as free variables of the RTM simulation process. In the FRT
model, SLW was used to control the biochemical parameters in the
PROSPECT model and then determine the leaf color. Finally, the sen-
sitive structure parameters and biochemical parameters of each vege-
tation strata were selected as the input variables to construct the LUT.

2.3.3. Forward modeling
Parameters of three post-fire vegetation strata (upper tree canopy,

middle vegetation layer, and lower vegetation layer) were required to
run the FRT model and simulate reflectance for different burn severity

classes. According to the sensitivity analysis results, most of the input
parameters were insensitive to our selected bands and therefore were
fixed to a value using information from remote sensing metadata,
previous studies or FRT model defaults (Table 2). The sd parameter of
the FRT model was used to constrain the TCC variation in this study
using the sd-TCC relationship described by Sprintsin et al. (2009). This
relationship was derived from a dataset that includes the forest type of
our study areas (pine, cypress and eucalyptus) and, therefore, should be
valid. The parameter sd was set to a range from 0.003 to 0.061, cor-
responding to TCC from 0% to more than 50% (Sprintsin et al., 2009).
Several measurements were used to reduce the errors that may be
caused by applying equations from Sprintsin et al. (2009) in our study.
Firstly, the sd range was divided into six categories (0.003–0.011,
0.013–0.021, 0.023–0.031, 0.033–0.041, 0.043–0.051, and
0.053–0.061) corresponding to six TCC levels (0%–10%, 10%–20%,
20%–30%, 30%–40%, 40%–50%, and higher than 50%) rather than
assigning specific values to reduce the corresponding errors between sd
and TCC. Secondly, the change of sd was found to reflect the variation
of TCC by checking the field photos of the study sites in the western
United States. The cr ranged from 0.6 to 4 (Gill et al., 2000), and BAI/
LAI ranged from 0.3 to 1 (Medhurst and Beadle, 2001). The para-
meterization of the LAI of the middle and lower vegetation layers was
based on the study of O'Grady et al. (2000). LAI2 was set to a range
from 0 to 0.4 while LAI1 ranged from 0 to 3. For the parameterization of
the PROSPECT model to simulate a green and brown leaf, the para-
meter combination scheme proposed by Kötz et al. (2004) and Lang
et al. (2005) was adopted (N=2.5, Cab=70 μg/cm2, Cw=0.048 g/
cm2 and Cs=0.2 for green leaf; and N=2.5, Cab=20 μg/cm2,
Cw=0.008 g/cm2 and Cs=1.5 for brown leaf). The corresponding
relationship between vegetation parameters and CBI is on the basis of
the criterion of CBI evaluation. In addition to the post-fire vegetation
parameters, the background parameters should also be considered to
simulate the post-fire environment. The background short-term after
wildfire will be mainly comprised of soil and charcoal. Therefore, three
reference spectra for the background layer were considered for the
model input: soil, dark charcoal (DCH) and light charcoal (LCH, a
mixture of charcoal and ash) (Fig. 6). The soil spectrum was measured
from a medium-moisture sandy soil, while both dark and light charcoal
spectra were measured with a GER 2600 field spectro-radiometer
(Geophysical & Environmental Research Corporation, Millbrook, NY)
by De Santis et al. (2009).

Fig. 4. Methodological flowchart of this study.
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Considering the potential ill-posed problem caused by unrealistic
combinations of input variables, a supervised simulation scheme was
used to alleviate the error, as it performs better than full-range varia-
tions (Chuvieco et al., 2007; De Santis et al., 2009). The background
was considered as comprised by charcoal and soil. The same range of
simulation scheme was adopted for the upper canopy parameters of the
sites in northern Australia and the western United States to validate the
universality of the RTM method on estimating burn severity. However,
different simulation scenarios were developed in the middle and un-
derstory layers because field surveys at the study sites in the western
United States were undertaken one-year post-fire while in northern
Australia they were undertaken immediately after the fire. The different
simulation scheme of middle and understory layers was used to re-
present the different recovery patterns of the vegetation in the middle
and lower layers. The simulated CBI ranges from 0.5 to 3 with a step of
0.1. An example of the combination of input parameters used for LUT
generation is listed in Table 3. The field survey for the western United
States (one-year post-fire) showed no observable LCH on the soil

surface from the field photos. Therefore, we did not undertake an LCH
scenario simulation in western United States study sites. There were a
total of 960 and 780 combinations of input parameters used to con-
struct the LUTs for northern Australia and the western United States,
respectively.

2.3.4. RTM model inversion
A LUT algorithm was used as the inversion method in this study to

retrieve burn severity from Landsat-5 and Sentinel-2A data. A Spectral
Angle Mapper (SAM) classification algorithm was used as the merit
function to find the simulated spectral reflectance spectrum that best
matched the observed spectrum. SAM is a pixel-based supervised clas-
sification technique that solves spectral similarity by calculating the
spectral angle (SA) between two spectral vectors (Dennison et al., 2004;
Kruse et al., 1993). This angle is independent of the length of vectors, so
it is insensitive to illumination or albedo effects. Therefore, SAM can
eliminate most of the errors caused by topographic fluctuations (De
Santis and Chuvieco, 2007). In the backward inversion, the minimum
SA between simulated and satellite-derived spectral reflectance was
used to estimate the structure and biochemical variables of the vege-
tation that determined a certain CBI value. The backward inversion was
conducted using all Landsat-5 TM reflective spectral bands and nine
Sentinel-2A MSI bands and FRT RTM with (RTM + TCC) and without
(RTM + GOS) TCC constraint. In the inversion process of RTM + GOS,
the estimated CBI is the result of global optimal search after matching
the observed spectra with all simulated spectra. In addition to the
mentioned spectral bands of Landsat-5 and Sentinel-2A, the post-fire
NBR was also included as an extra vector to improve the estimates of
RTM model inversion. Model inversion was carried out in the LUT
corresponding to the specific TCC level according to the input MODIS
VCF data. Given that the significance and utility of using Sentinel 2A
MSI VRE bands to estimate burn severity has not been previously
evaluated, we also evaluated the role of the VRE bands in RTM inver-
sion by comparing the accuracy between the burn severity estimation
results with and without VRE bands.

2.4. Accuracy assessment

Burn severity was assessed against field data collected in northern
Australia and the western United States as burn severity classes and CBI
values, respectively. The accuracy of the method proposed in this study
was evaluated using the confusion matrix in northern Australia, while
linear correlation and root mean square error (RMSE) between field
measured and estimated burn severity was used in the western United
States. The results derived from our method were compared to those
obtained using two standard empirical spectral indices broadly used to
map burn severity, dNBR and RdNBR.The empirical methods were used
as a point of reference, as empirical models are still broadly used in fire
management for mapping fire severity. A threshold with less manual
interference is needed for the binary classification using an empirical
method. In this study, the threshold calculation method based on dNBR
and RdNBR proposed by Edwards et al. (2018) was adopted in the
northern Australian study area (Eq. (1)).

= +µ µ µThs ((( ) ( ))/2) ( )1 1 2 2 2 2 (1)

where μ1 and σ1 represent the mean and standard deviation of the field-
measured SV class, and μ2 and σ2 represent the mean and standard de-
viation of the field-measured NSV class, respectively.

A second-order polynomial function was used to construct the em-
pirical model by fitting field-measured CBI with both dNBR and RdNBR
in the study sites of the western United States following previous stu-
dies (De Santis et al., 2010; Soverel et al., 2010). The dNBR and RdNBR
images of fires in the western United States were also provided by the
MTBS. The latest scene with good quality before a fire was selected as
the pre-fire image to derive dNBR and RdNBR.

Table 2
The input vegetation parameters and default range used for the parameteriza-
tion of the FTR RTM.

Parameters Units Symbol Range Defaults

*** Upper tree canopy ***
stand density m2 sd 0.001–0.08 0.1115
tree height m th 10–30 15.9
crown length m cl 5–10 4.2
cylinder m cy 0–10 0
crown radius m cr 0.2–5 1.5
DBH cm DBH 2–25 18
total dry leaf weight kg/tree m 1.1–3 2.67
leaf weight per area g/m2 SLW3 30–180 160
eccentricity parameter of LAD eln3 0–4.5 3.99
modal leaf angle (°) thm3 0–90 53.57
shoot length m sl 0.05–0.6 0.1
BAI/LAI ratio BAI/LAI 0.01–1 0.3123
grouping index GI 0.6–2.8 1.69
H-G asymmetry HG 0.1–0.6 0.4
Prospect 3
water content % of SLW c1 50–320 240
chlorophyll content % of SLW c2 0.3–1 0.554
dry matter % of SLW c3 94–99.9 97.11
leaf str. param. N3 1.6–2.8 1.6016
refraction index ratio rir 0.6–1.2 0.9
*** Middle vegetation layer ***
LAI2_ground LAI2 0.01–6 0.208
HS-parameter sl2 0.02–0.4 0.15
foliage clumping parameter clmp2 0.4–1 1.0
displacement parameter szz 0–2 1.2
eccentricity parameter of LAD eln2 0–4.5 3.99
modal leaf angle (°) thm2 0–90 53.37
n_ratio2 n_ratio2 0.6–1.3 0.991
leaf weight per area g/m2 SLW2 30–180 81.7
Prospect 2
water content % of SLW c11 130–320 139
chlorophyll content % of SLW c21 0.3–0.8 0.36
dry matter content % of SLW c31 94–99.8 99.52
brown pigment content % of SLW c41 0.0002–4 0.1
leaf str. param. N2 1–2.8 1.315
*** Lower vegetation layer ***
LAI1_ground LAI1 0.01–1.1 1.064
HS-parameter sl1 0.02–0.4 0.15
foliage clumping parameter clmp1 0.4–1 1
eccentricity parameter of LAD eln1 0–4.5 3
modal leaf angle (°) thm1 0–90 75.469
n_ratio1 n_ratio1 0.6–1.3 1.224
leaf weight per area g/m2 SLW1 30–180 78.54
Prospect 1
water content % of SLW c111 130–320 134.24
chlorophyll content % of SLW c211 0.3–0.8 0.425
anthocyanins % of SLW c311 0.3–0.8 0.733
dry matter content % of SLW c411 94–99.8 98.343
leaf str. param. N1 1–2.5 1.0053
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3. Results

3.1. Validation in northern Australia

3.1.1. Influence of TCC on the spectral response of burnt plots
The surface reflectance and post-fire NBR of the field plots were

extracted from Sentinel 2A MSI and averaged by fire severity level (SV
and NSV) and TCC (< 5%, 5%–10%, 10%–20% and>20%) to de-
monstrate the influence of TCC on the spectral response and confusion
between burn severity levels (Fig. 7). The SA was used to quantitatively
evaluate the similarity of different spectra. Fig. 7a1 and 7b1 represent
the extracted mean reflectance from all field plots without constraining
TCC. The average reflectance of all field plots masked the reflectance
variation between different TCC levels. By classifying the field plots
according to TCC, the difference of SA under different TCC levels is
widened. The SA between the spectra extracted from the plots with NSV
burn severity, TCC of< 5% and>20% (Fig. 7a2 and 7a5) was 0.61
and 0.1 for SV plots (Fig. 7b2 and 7b5), demonstrating that the spectra
of NSV plots (Fig. 7a) were more susceptible to TCC than the spectra of
SV plots (Fig. 7b). The SA between NSV plots when TCC is< 5%
(Fig. 7a2) and SV plots when TCC is 10%–20% (Fig. 7b4) is 0.13,
smaller than the SA between NSV and SV plots within the same TCC
range of 10%–20% (Fig. 7a4 and 7b4, 0.32). In the model inversion
process, smaller SA means higher spectral similarity and thus a more
similar burn severity. If TCC is not constrained in the model simulation
and inversion process, there will be a severe overestimation for NSV
burn severity level in low TCC regions. The spectral analysis results of
the field plots are consistent with our theoretical analysis in Fig. 1, that

Fig. 5. Total sensitivity index (TSI) of (a) visible bands (VIS), (b) the near-infrared band (NIR), (c) shortwave infrared bands (SWIR) and (d) the mean TSI of the FRT
model variables in each vegetation strata.

Fig. 6. Reference spectra used as post-fire background; soil, dark charcoal
(DCH) and light charcoal (LCH, a mixture of charcoal and ash). The reference
spectra were provided by De Santis et al. (2009).
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the same burn severity will correspond to different spectral signatures
and the same spectral signature could correspond to different levels of
burn severity with the variation of TCC.

Two sample spectrums within different burn severity levels simu-
lated by FRT RTM were also extracted (Fig. 8). Fig. 8a and b shows the
simulated spectra of NSV and SV burn severity levels within different
TCC levels, respectively. It can be seen from Fig. 8 that FRT RTM has
the capacity to simulate the canopy reflectance with different TCC le-
vels, and the multi-bands can provide more spectral information to
identify different burn severity levels. The characteristics of the spec-
trum simulated by FRT RTM are in agreement with the analysis results
of the field plots. The same burn severity showed different character-
istics with the variation of TCC, and the spectra of the NSV burnt level
were more susceptible to TCC than spectra of the SV burnt level.
Therefore, model inversion carried out in the LUT corresponding to the
specific TCC level can significantly reduce the overestimation errors in
low TCC regions for the NSV burnt level. However, the reflectance of
the plots with TCC<10% was mainly dominated by charcoal and dead
litter, whilst vegetation had much less influence. This resulted in ubi-
quitous spectral confusion between NSV and SV (Fig. 7a2, 6a3, 6b2, and
6b3) with the SA with the same TCC (around 0.22), indicating that
spectral confusion with low TCC can't be avoided completely.

3.1.2. Evaluation of burn severity estimates
Burn severity was estimated using the FRT RTM + GOS and FRT

RTM + TCC methods. The producer's accuracy of the RTM + GOS at
study site 1 was 93% and 38% for the SV and NSV burn severity levels,
respectively (Table 4). While most of the plots classified as SV were
correctly classified, overestimation occurred for the NSV plots. The use
of TCC information to invert FRT RTM (RTM + TCC) improved the
producer's accuracy from 38% to 85% for NSV at the cost of a decrease
of the producer's accuracy of SV from 93% to 73%. The user's accuracy
of SV increased from 50% to 76% while it decreased from 90% to 82%
for NSV. The overall classification accuracy improved from 60% to
80%, and the kappa coefficient increased from 0.27 to 0.58 when in-
tegrating TCC information in RTM parameterization and backward in-
version (Table 4). Model performances were similar for study site 2. The
producer's accuracy of the NSV increased from 72% to 83%, the user's
accuracy of the SV improved from 22% to 32% and the overall accu-
racy, and the kappa coefficient increased from 73% to 83% and 0.25 to
0.38, respectively (Table 4). Merging the results for both sites demon-
strated that the estimation accuracy significantly improved by use of
the RTM + TCC method (Table 4). The overall accuracy and kappa
coefficient improved from 65% to 81%, and 0.35 to 0.55, respectively.
These improvements demonstrated that restricting the TCC in the in-
version process is a valid approach for both the LDS (site 1) and EDS
(site 2) fires.

For comparison, burn severity was also obtained using two standard
spectral indices broadly used to map burn severity, dNBR and RdNBR
(Table 4). For site 1, the producer's accuracy of NSV reached 96% and
99% for dNBR and RdNBR, respectively but the accuracy for SV was
very low (26% and 6% for dNBR and RdNBR, respectively). The overall
accuracy, 68% for dNBR and 62% for RdNBR, and kappa coefficient,
0.25 for dNBR and 0.06 for RdNBR, were also unacceptable. These poor
results were due to the fact that the threshold used for the binary burn
severity classification was too high and led to misclassification of most
of the SV plots as NSV, indicated that this automatic threshold selection
method is unstable and have no universality. For study site 2, the
overall accuracy was higher (85% for dNBR, 84% for RdNBR) and si-
milar to the overall accuracy of the RTM + TCC method (83%). The
empirical methods produced slightly lower kappa coefficient, 0.3 and
0.31 for dNBR and RdNBR, respectively, than the RTM + TCC method
(0.38). Similar to study site 1, the burn severity of site 2 field SV plots
was highly underestimated based on dNBR and RdNBR (producer's
accuracy of SV, 50% and 56% for dNBR and RdNBR, respectively).
However, due to the marked difference in the number of SV (16 plots)Ta
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and NSV (163 plots) plots, the high producer's and user's accuracies of
NSV largely enhanced the overall accuracy. When merging the results
from both sites, the overall accuracy using empirical methods (74% and
70% for dNBR and RdNBR, respectively) was higher than the
RTM + GOS method (65%) and lower than the RTM + TCC method
(81%). However, the SV producer's accuracy and overall kappa coeffi-
cient based on dNBR (28%, 0.25) and RdNBR (12%, 0.06) were un-
acceptable. Overall, the RTM + TCC method showed the best perfor-
mance (overall accuracy: 81%, kappa coefficient: 0.55).

To clarify the role of VRE bands in the retrieval of burn severity
using Sentinel-2A MSI and RTM inversion, we compared the results of
inverting FRT RTM + TCC with and without the VRE bands. For study
site 1, the overall accuracy and kappa coefficient without using VRE
bands were 80% and 0.58, respectively (Table 4). The producer's and
user's accuracies for the SV and NSV are only slightly different to the
results using VRE bands. For study site 2, the accuracy was the same,
independent of the VRE bands. This indicated that the inclusion of the
VRE bands of Sentinel-2A MSI did not significantly affect the burn se-
verity estimation compared to using full spectral bands and the inver-
sion of RTM. This was probably because other spectral bands, or post-
fire NBR, mask the sensitivity of the VRE bands to fire. The focus of this
study is burn severity estimation, so the dNBR as well as visual inter-
pretation were used to extract burn area. Burn severity maps for the two

study sites of northern Australia were produced based on the burn area
extraction and RTM + TCC method (Fig. 9). Fires in site 1 represented
LDS fires, more severe than the patchy EDS fires of study site 2.

3.2. Validation in the western United States

3.2.1. Influence of TCC on the spectral response of burnt plots
The surface reflectance and post-fire NBR of the field plots in the

western United Sates were extracted from Landsat-5 TM and averaged
by fire severity level and TCC (<10%, 10%–20%, 20%–50% and>
50%) to demonstrate the influence of TCC on the spectral response and
confusion between burn severity levels (Fig. 10). In this case, the burn
severity was classified into low, moderate and high using CBI threshold
values of 2 and 2.5. Similar to the NSV results in northern Australia
(Fig. 7a), the spectral response of the low and moderate burnt levels
(Fig. 10a and b) showed obvious differences between different TCC,
demonstrating that the low and moderate burnt levels are more sus-
ceptible to TCC. The spectra of the high burn severity level were less
affected by TCC variability (Fig. 10c). This was also observed from the
SA between the spectra of lowest and highest TCC within the same burn
severity. The SA was 1.27 (Fig. 10a1 and 10a5), 0.98 (Fig. 10b1 and
10b5) and 0.08 (Fig. 10c1 and 10c5) for low, moderate and high burn
severity, respectively. When the TCC exceeded 50%, the spectrum of

Fig. 7. Mean and standard deviations (std) of the Sentinel-2A MSI spectral signatures of plots with (a) not severe (NSV) and (b) severe (SV) burn severity and different
tree canopy cover (TCC) values at northern Australian study sites. The x-axis represents the nine spectral bands and post-fire NBR, the y-axis represents the value of
the reflectance (SR) and post-fire NBR. The first column represents the reflectance from all field plots without constraining TCC; other columns represent different
TCC levels.

Fig. 8. Two sample spectrums within different TCC levels simulated by FRT RTM in (a) NSV and (b) SV burn severity levels. In order to make a more intuitive
comparison with the spectral response of the field plots, only the reflectance (SR) and NBR of these corresponding bands were selected.

C. Yin, et al. Remote Sensing of Environment 236 (2020) 111454

10



Ta
bl
e
4

Co
nf
us
io
n
m
at
ri
x
co
m
pa
ri
ng

bu
rn
se
ve
ri
ty
ob
se
rv
ed

in
th
e
fie
ld
an
d
es
tim

at
ed

at
st
ud
y
si
te
s
1
an
d
2,
an
d
th
e
tw
o
st
ud
y
si
te
s
to
ge
th
er
.R
TM

+
G
O
S
re
pr
es
en
ts
th
e
m
et
ho
d
ba
se
d
on

FR
T
RT
M
an
d
gl
ob
al
op
tim

al
se
ar
ch

(w
ith
ou
tc
on
st
ra
in
in
g
TC
C)
.R
TM

+
TC
C
re
pr
es
en
ts
th
e
m
et
ho
d
th
at
co
ns
id
er
ed

th
e
va
ri
at
io
n
of
TC
C
in
m
od
el
si
m
ul
at
io
n
an
d
al
lr
efl
ec
tiv
e
ba
nd
s
w
er
e
us
ed

in
ba
ck
w
ar
d
in
ve
rs
io
n.
RT
M
+

TC
C
(w
ith
ou
tV

RE
ba
nd
s)

re
pr
es
en
ts
th
e
m
et
ho
d
th
at
co
ns
id
er
ed

th
e
va
ri
at
io
n
of
TC
C
in
m
od
el
si
m
ul
at
io
n
an
d
re
fle
ct
iv
e
ba
nd
s
ot
he
r
th
an

re
d
ed
ge

ba
nd
s
ar
e
co
ns
id
er
ed

in
ba
ck
w
ar
d
in
ve
rs
io
n.
dN

BR
an
d
Rd
N
BR

ar
e
st
an
da
rd
em

pi
ri
ca
ls
pe
ct
ra
l

in
di
ce
s
br
oa
dl
y
us
ed

to
m
ap

bu
rn

se
ve
ri
ty
.T
he

N
SV

an
d
SV

in
th
is
ta
bl
e
re
pr
es
en
t
th
e
no
t-s
ev
er
e
an
d
se
ve
re
bu
rn

se
ve
ri
ty
le
ve
ls
.

RT
M
+

G
O
S

RT
M
+

TC
C

dN
BR

Rd
N
BR

RT
M
+

TC
C
(w
ith
ou
t
VR

E
ba
nd
s)

N
SV

SV
To
ta
ls

Pr
od
uc
er
's

ac
cu
ra
cy

N
SV

SV
To
ta
ls

Pr
od
uc
er
's

ac
cu
ra
cy

N
SV

SV
To
ta
ls

Pr
od
uc
er
's

ac
cu
ra
cy

N
SV

SV
To
ta
ls

Pr
od
uc
er
's

ac
cu
ra
cy

N
SV

SV
To
ta
ls

Pr
od
uc
er
's

ac
cu
ra
cy

St
ud
y
si
te
1

Fi
el
d
da
ta

N
SV

69
11
3

18
2

38
%

15
4

28
18
2

85
%

17
5

7
18
2

96
%

18
0

2
18
2

99
%

15
7

25
18
2

86
%

SV
8

11
3

12
1

93
%

33
88

12
1

73
%

90
31

12
1

26
%

11
4

7
12
1

6%
35

86
12
1

71
%

To
ta
ls

77
22
6

30
3

18
7

11
6

30
3

66
38

30
3

29
4

9
30
3

19
2

11
1

30
3

U
se
r's

ac
cu
ra
cy

90
%

50
%

60
%

82
%

76
%

80
%

94
%

82
%

68
%

61
%

78
%

62
%

82
%

77
%

80
%

Ka
pp
a

0.
27

0.
58

0.
25

0.
06

0.
58

St
ud
y
si
te
2

Fi
el
d
da
ta

N
SV

11
8

45
16
3

72
%

13
5

28
16
3

83
%

14
5

18
16
3

89
%

14
2

21
16
3

87
%

13
5

28
16
3

83
%

SV
3

13
16

81
%

3
13

16
81
%

8
8

16
50
%

7
9

16
56
%

3
13

16
81
%

To
ta
ls

12
1

58
17
9

13
8

41
17
9

15
3

26
17
9

14
9

30
17
9

13
8

41
17
9

U
se
r's

ac
cu
ra
cy

98
%

22
%

73
%

98
%

32
%

83
%

95
%

31
%

85
%

95
%

30
%

84
%

98
%

32
%

83
%

Ka
pp
a

0.
25

0.
38

0.
30

0.
31

Tw
o
st
ud
y

si
te
s

Fi
el
d
da
ta

N
SV

18
7

15
8

34
5

54
%

28
9

56
34
5

84
%

32
0

25
34
5

93
%

32
2

23
34
5

93
%

29
2

53
34
5

85
%

SV
11

12
6

13
7

92
%

36
10
1

13
7

74
%

98
39

13
7

28
%

12
1

16
13
7

12
%

38
99

13
7

72
%

To
ta
ls

19
8

28
4

48
2

32
5

15
7

48
2

41
8

64
48
2

44
3

39
48
2

33
0

15
2

48
2

U
se
r's

ac
cu
ra
cy

94
%

44
%

65
%

89
%

64
%

81
%

77
%

61
%

74
%

73
%

41
%

70
%

88
%

65
%

81
%

Ka
pp
a

0.
35

0.
55

0.
25

0.
06

0.
55

C. Yin, et al. Remote Sensing of Environment 236 (2020) 111454

11



the high burnt levels showed similar characteristics to the moderate and
low burnt levels with the lower TCC. More specifically, high burn se-
verity with TCC>50% (Fig. 10c5) demonstrated spectral confusion
with moderate burn severity when TCC was 20%–50% (Fig. 9c5 and
9b4, SA=0.13) and moderate burn severity when TCC was 20%–50%
demonstrated spectral confusion with low burn severity when TCC was
10%–20% (Fig. 10b4 and 10a3, SA=0.19). The SA between high and
moderate burn severity when TCC is> 50% (Fig. 10c5 and 10b5,
SA=0.39) and the SA between moderate and low burn severity when
TCC is 20%–50% (Fig. 10b4 and 10a4, SA=1.13) was higher than the
corresponding cross burn severity SA. Consequently, the low burn se-
verity plots were expected to be overestimated at low TCC and the

moderate to high burn severity is expected to be underestimated when
TCC was not considered for the retrieval of fire severity.

Three sample spectrums within different TCC and different burn
severity levels simulated by FRT RTM were also extracted (Fig. 11).
Fig. 11a, b and 10c show the simulated spectrum of low, moderate, and
high burn severity within different TCC levels, respectively. Fig. 11
shows that FRT RTM can simulate burn severity levels in different TCC
levels. The same burn severity showed different characteristics with the
variation of TCC, and the spectra of low and moderate burnt level were
more susceptible to TCC than the high burnt level. Consistent with the
spectral analysis results of field plots, model inversion carried out in the
LUT corresponding to the specific TCC level according to the input

Fig. 9. Burn severity maps for study sites 1 (left) and 2 (right) of northern Australia obtained using the RTM + TCC method developed in this study.

Fig. 10. Mean and standard deviations (std) of the Landsat-5 TM spectral signatures of plots with (a) low, (b) moderate and (c) high burn severities and TCC ranges in
the western United States study sites. The x-axis represents the six spectral bands and post-fire NBR, and the y-axis represents the spectral reflectance (SR) and post-
fire NBR.
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MODIS VCF data can significantly reduce the overestimation errors in
low TCC regions for low burn severity and the underestimation errors in
high TCC regions for high burn severity.

3.3. Evaluation of burn severity estimates

The CBI was estimated based on RTM + TCC, RTM + GOS, dNBR,
and RdNBR at the four study sites of the western United States (Fig. 12).
Some field plots with low burn severity (CBI< 2) were overestimated.

Fig. 11. Three sample spectrums within different TCC levels simulated by FRT RTM in (a) low, (b) moderate and (c) high burn severity levels. In order to make a
more intuitive comparison with the spectral response of the field plots, only the reflectance (SR) and NBR of these corresponding bands were selected.

Fig. 12. Field-observed versus estimated burn severity (expressed as CBI) for (a) study site 3, (b) study site 4, (c) study site 5 and (d) study site 6 of the western United
States. The dashed line represents the 1:1 line, the solid line is the fitted line. From left to right, each column represents the estimation results based on the
RTM + TCC method, the RTM + GOS method, dNBR, and RdNBR, respectively.
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Conversely, some of the plots with moderate (2 ≤ CBI < 2.5) and high
(CBI ≥2.5) burn severity were underestimated when estimating burn
severity using the RTM + GOS method (second column in Fig. 12). The
RTM + TCC method reduced the underestimation and overestimation
errors, significantly improved the determination coefficients (R2) (from
0.19 to 0.5, from 0.32 to 0.55, from 0.48 to 0.65, from 0.34 to 0.48 for
study sites 3 to 6, respectively) and decreased the RMSE (from 0.6 to
0.47, from 0.48 to 0.45, from 0.52 to 0.43, from 0.44 to 0.36 for study
sites 3 to 6, respectively). This reduction in error was also observed in
the slope fitting in each study site of the RTM + GOS method (0.49 for
study site 3, 0.50 for study site 4, 0.62 for study site 5, and 0.73 for
study site 6). By integrating TCC into the parameterization and inver-
sion of FRT RTM, the slope of the regression between the observed and
estimated CBI at each study site increased to 0.9, 0.84, 0.77, and 0.82,
for sites 3 to 6, respectively. Among these four study sites, study site 3
presented the highest TCC level and led to the most severe under-
estimation of moderate to high burn severity when using the
RTM + GOS method. The most severe overestimation occurred when
CBI was lower than 1.5 in study sites 4 and 5. By contrast, the perfor-
mance of the empirical models using dNBR and RdNBR was much less
stable among these four study sites (Fig. 12) than that of the
RTM + TCC method. The fitted empirical model between field-mea-
sured CBI and the two spectral indices varied considerably between

study sites while the RTM + TCC method was more stable.
When all field plots from the four study sites were merged, the R2

improved from 0.33 to 0.54, the RMSE decreased from 0.53 to 0.43, and
the fitted slope increased from 0.56 to 0.8, when including information
of TCC in the RTM, in comparison to the RTM + GOS (Fig. 13a and b).
The R2 values between CBI observed and estimated using dNBR
(Fig. 13c) and RdNBR (Fig. 13d) were similar to that between CBI ob-
served and estimated using the RTM + GOS method (0.33) but lower
than using the RTM + TCC method (0.54).

In addition to the burn severity data measured in the field, field
photos at each location are included as a reference of the field condi-
tions related to the CBI assessments (Fig. 14). There is a general over-
estimation for low burn severity in low tree-covered regions
(Fig. 14a–c). The field CBI of three plots with low TCC value (< 18%)
were 1.33, 0.15 and 1.12 (Fig. 14a–c). CBI estimates, based on the
RTM + GOS method, overestimated the CBI (2.25, 1.45, and 2.3, re-
spectively). By integrating TCC in the parameterization and inversion of
FRT RTM, the overestimation errors were reduced, obtaining CBI values
of 1.4, 0.7, and 1.7, respectively, which are closer to the observations.
For regions with dense TCC (Fig. 14d–f), the spectrum of high and
moderate burn severity was similar to the moderate and low burn se-
verity in the lower TCC region (Fig. 10c5, 9b4, and 9a3, respectively).
The observed CBIs were 2.38, 2.2 and 2.84 while the CBI estimates,

Fig. 13. Field-observed and estimated burn severity (expressed as CBI) for all field plots. Estimated results based on (a) the RTM+ TCC method, (b) the RTM+ GOS
method, (c) dNBR, and (d) RdNBR.
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using the RTM + GOS method, gave values of 1.4, 0.8 and 1.0, re-
spectively. The RTM + TCC method corrected the underestimation
errors produced by the spectral confusions and obtained CBI values of
2.4, 2.1 and 2.8, respectively. Burn severity maps for the 15 fires that
occurred in the 4 study sites of the western United States were produced
using the RTM + TCC method (Fig. 15).

4. Discussion

The RTM + GOS method resulted in high commission errors for the
NSV and high omission errors for the SV burnt levels in study site 1.
These low accuracies are due to the large number of plots with low TCC,
thus the background charcoal and ash contributed more to the re-
flectance signal, leading to the high commission errors of the NSV burnt
level and high omission errors for the SV burnt level. The RTM has the
capacity to simulate the canopy reflectance with different TCC levels,
and the multi-bands can provide more spectral information to identify
different burn severity. Model inversion carried out in a LUT corre-
sponding to a specific TCC level significantly reduced the commission
errors in low TCC regions. The overall accuracy and kappa coefficient
were significantly improved by integrating TCC in FRT RTM para-
meterization and backward inversion, but the user's and producer's
accuracy of SV and NSV decreased accordingly. These results demon-
strated that the spectral confusion between NSV and SV burn severity is
inevitable in low TCC regions because of the poor contribution from the
photosynthetic vegetation to the signal received by the sensor (Fig. 7a2,
7a3, 7b2, and 7b3). At study site 2, the SV sample (16 plots) was much
smaller than NSV (163 plots). Consequently, even the slight commission
error in the NSV level markedly influenced the user's accuracy of the SV

level and the kappa coefficient. Furthermore, the improvement in ac-
curacy at study site 2 was less than that of study site 1. Our method has
demonstrated a potential to reduce the burn severity estimation errors
for areas with low TCC, and thus site 1, with lower tree canopy cover
than site 2, experienced greater improvement in estimation accuracy.
Moreover, the unsatisfactory performance of dNBR and RdNBR also
indicated that the empirical methods are limited by field calibration (De
Santis et al., 2010; Quintano et al., 2017).

Field surveys were within weeks post-fire at the northern Australia
study sites, and were one-year post-fire for western United States study
sites. Shortly after a forest fire, the background will contain soil and
ash, while one-year post-fire, the understory vegetation will regrow and
the charcoal and ash on the soil surface will be removed by rain and
wind. Factors such as the degree of recovery of different vegetation
strata, soil type and the proportion of surface charcoal will affect the
evaluation of burn severity using remotely sensed data. Therefore, as-
sessing burn severity one-year post-fire is much more complicated than
doing it immediately post-fire. This suggests that using the same
parameterization scheme in all areas is not optimal. This is one of the
reasons why the accuracy is not as good as that of previous studies in
short-term post-fire burn severity estimation based on RTM methods
(RMSE range from 0.14 to 0.21, R2 range from 0.43 to 0.96) (De Santis
et al. 2009, 2010). In some cases, the overestimation errors of low burn
severity were largely reduced in the RTM + TCC method but an
overestimation was still observed (Fig. 12c) mainly due to a high pro-
portion of charcoal on the soil surface. As shown in Fig. 16, the field CBI
values for two field plots from site 5 with low burn severity were 0.15
and 1.12 (Fig. 16). Generally, the proportion of charcoal on the soil
surface will decrease dramatically one year after a fire due to rapid

Fig. 14. Examples of field photos to demonstrate the validity of the method proposed in this study to correct overestimation and underestimation errors in retrieving
CBI using the RTM+ TCC method. CBI_F, CBI_RTM+ GOS, and CBI_RTM+ TCC represent the CBI values of field measurements and based on the RTM+ GOS, and
RTM + TCC methods, respectively. TCC represents the percent tree canopy cover at the field plots.
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vegetation recovery, particularly from low burn severity, but these two
field plots are exceptional. The high proportion of charcoal and dead
litter on the surface at these two plots greatly influenced the estimation
results. That is why our method still overestimated the CBI at these two
plots, although it has mitigated most of the estimation error. Over-
estimation errors are unavoidable in the situation where charcoal still
occupies a high proportion of the ground surface one-year post-fire.
However, this kind of situation rarely occurs due to the vegetation re-
covery after fire. Furthermore, even the low CBI in study site 5
(Fig. 12c) was overestimated in this kind of situation, the estimated
value was generally lower than 2 and therefore still corresponded to a
low burn severity level. In post-fire management, the occurrence of
high burn severity areas is generally of greater interest than areas of
low burn severity (De Santis et al., 2009). Therefore, the slight over-
estimation error of low burn severity in this kind of special situation can
be tolerated.

5. Conclusions

Burn severity is a critical factor in fire management and in assessing
post-fire vegetation recovery. Previous burn severity estimation studies
based on RTM simulation methods generally suggest that burn severity
and spectral reflectance response have a unique correspondence to each
other. However, depending on variations in TCC, background char and
ash have different contributions to the spectral signal observed by re-
mote sensors. We found that the same burn severity produced different
spectral reflectance values and the same spectral reflectance could be
observed from different burn severity levels. In this study, we used a
stratified method to integrate TCC into FRT RTM parameterization and
backward inversion, to mitigate the spectral confusion between dif-
ferent burn severities under varying TCC. Six study sites across northern
Australia and the western United States were selected to validate the
proposed method. Compared with the method based on traditional
RTM simulation with global optimal search (RTM + GOS), our method
(RTM + TCC) significantly reduced the overestimation errors for low
burn severity in low TCC regions and underestimation errors for

Fig. 15. Burn severity maps based on estimated CBI for 15 fires in the western United States. The background image is a false color composite from a Landsat-5 TM
image of each fire region. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.
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moderate to high burn severity in high TCC regions. The proposed
method also performed better than two commonly used spectral in-
dices, dNBR and RdNBR. Compared with dNBR and RdNBR, the
RTM + TCC method is more universal and only requires a single post-
fire satellite image, while dNBR and RdNBR require a pair of pre and
post-fire satellite images which may be limited in cloudy regions. We
also found that the VRE Sentinel-2 bands did not play an important role
in burn severity estimation based on full spectral bands and the in-
version of FRT RTM. This is probably because other spectral bands or
post-fire NBR mask the sensitivity of the VRE bands to fire. The validity
of the RTM inversion methods to more accurately classify burn severity
in tropical savannas was clearly proven in this study. The greater ac-
curacy of the burn severity mapping estimation resulting from our ap-
proach will help us to better understand post-fire vegetation resilience
and help in post-fire forest management.
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