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Estimation of canopy cover in dense mixed-species forests using airborne
lidar data
Tauri Arumäea,b and Mait Langa,c

aInstitute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia; bForest survey management division,
State Forest Management Centre, Tallinn, Estonia; cDepartment of Remote Sensing, Tartu Observatory, Tõravere, Tartumaa, Estonia

ABSTRACT
Airborne laser scanning (ALS) data and digital hemispherical photos (DHP) from 93 sample
plots in Laeva test site, Estonia, were used to study effects of phenology and scan angle on
the ALS-based canopy cover (CCALS) estimates. The relative share of first returns (P1/A) for 6185
forest stands was analysed. The CCALS was calculated using different height thresholds and
echoes, and was compared with the CC estimates based on DHP (CCDHP) and crown model
(CCRCrown). The first of many echoes-based canopy cover estimate (CCALS,1.3_1) saturated at
values greater than 80%. The strongest correlation of CCDHP was found with CCALS,1.3_A using
all echoes and a 1.3 m height break (R2 = 0.81, RMSE = 11.8%). Correcting the estimate for
view nadir angle did not improve the correlation of CCALS,1.3_A with CCDHP. The CCRCrown had a
weak correlation (R2 < 0.25) with CCALS and with CCDHP. The P1/A was not influenced by tree
species composition, but by phenology, stand relative density and forest height;
however, CCALS was not dependent on stand height. Foliage phenology had a substantial
effect on CCALS and CCDHP. In dense mixed-species forests, we recommend to use all returns
for canopy cover estimation.
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Introduction

Airborne laser scanning (ALS) has become a widely
used remote sensing method for assessing forest struc-
ture variables in operational forestry (Andersen,
McGaughey & Reutebuch, 2005). The main applica-
tions of ALS are forest height map construction
(Arumäe & Lang, 2016a; Næsset, 1997a), wood volume
and biomass estimation (Bouvier, Durrieu, Fournier, &
Renaud, 2015; Ferraz et al., 2016; Guerra-Hernández
et al., 2016; Næsset, 1997b; Patenaude et al., 2004,
Popescu, Zhao, Neuenschwander, & Lin, 2011), carbon
stock monitoring (Bright, Hicke, & Hudak, 2012) and
biodiversity mapping (Müller & Vierling, 2014; Smith,
Anderson, & Fladeland, 2008). Vertical canopy cover
(CC) is the key factor for most of these estimates and
when combined with other forest structure parameters
it is used for leaf-area index (LAI) mapping (Korhonen
&Morsdorf, 2014; Solberg et al., 2009) or could be used
for planning of thinnings in forest management
(Vastaranta et al., 2011). Forest canopy structure is
additionally described with mean tree height (H),
crown length and the ratio of crown length to H,
crown cover, effective CC and angular canopy closure.
Distinguishing between different CC estimates is essen-
tial for forest structure studies (Jennings, Brown, &
Sheil, 1999; Korhonen, Korpela, Heiskanen, &
Maltamo, 2011). The CC, as defined by Jennings et al.

(1999) and as used in this study, is the share of ground
covered by the vertical projection of the canopy and is
commonly expressed as a percentage. The simplest
method for measuring vertical CC is using the
Cajanus tube (Korhonen, Korhonen, Rautiainen, &
Stenberg, 2006; Rautiainen, Stenberg, & Nilson, 2005).
Canopy closure, on the other hand, is defined as the
proportion of the sky hemisphere obscured by the
vegetation canopy when viewed from a single point
(Jennings et al., 1999). Canopy closure can be estimated
from digital hemispherical photos (DHP) or measured
using the LAI-2000 plant canopy analyser (Jonckheere,
Nackaerts, Muys, & Coppin, 2005).

The CC and crown cover (ratio of the total area of
crown vertical projections divided by the sampling
area) are also estimated using crown radius models
and stand density (Spurr, 1948). Tree crown radius is
commonly estimated using stem diameter at breast
height (Davies & Pommerening, 2008; Spurr, 1948)
and can be used for tree competition assessment
(Purves, Lichstein, & Pacala, 2007). The relationship
between stem diameter at breast height, tree crown
radius and CC can be used to estimate the mean tree
size from ALS data (Ferraz, Saatchi, Mallet, & Meyer,
2016). However, crown radius models may yield dif-
ferent crown cover estimates, depending on the defi-
nition of tree crowns, tree species and age (Kandare,
Ørka, Dalponte, Næsset, & Gobakken, 2017).
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Commonly, tree crowns are modelled as solid geome-
trical shapes – a cone, ellipsoid (Kuusk & Nilson,
2000) or convex irregular polygon (Mongus & Žalik,
2015). If gaps in the tree crown are accounted, then
the result is an effective CC estimate (Duncanson,
Cook, Hurtt, & Dubayah, 2014).

A DHP records all the radiation penetrating
through tree crown or plant canopy, taking into
account all the gaps inside the tree crowns, and the
share of sky pixels in the total number of pixels is the
effective canopy closure. For the conversion of
canopy closure into CC, the view zenith angle should
not exceed 20° (Korhonen, Korpela, Heiskanen &
Maltamo, 2011) and the estimates should be cor-
rected for within-crown gap fraction (Nilson &
Kuusk, 2004). The sources of uncertainties in the
ALS data-based estimates of CC (CCALS) are related
to the scanning setup where the view nadir angle
(VNA) is usually in the range of 0°≤VNA≤30° and
the angular dependence of the observations is char-
acteristic of canopy closure. There are no clear rules
of how to account for within-crown gaps. The pulse
footprint of the scanners is commonly larger than
gaps inside crowns. For example, Leica ALS50-II at
a 2400-m flight altitude and beam divergence of 0.22
mrad (Leica, 2007) has a pulse footprint of about
50 cm in diameter. The canopy itself is also semi-
transparent on near-infrared (NIR) wavelengths used
in most of the topographic mapping oriented ALS
devices, so defining crown gaps is problematic. A
laser scanner can also retrieve echoes from overlap-
ping crowns, which would allow estimating crown
cover, when the overlapping areas of the crowns are
taken into account separately.

The most common method for the CCALS estima-
tion is using a height break or threshold and calculat-
ing the share of the first and first of many echoes
above the height break in the total number of echoes
(Korhonen, Korpela, Heiskanen & Maltamo, 2011).
The threshold is commonly set at a few metres above
the ground corresponding to the live crown base
height (Smith et al., 2009). However, it is found that
the CCALS estimate based on the first and first of
many echoes using the, e.g. Leica ALS50-II scanner
will result in the CCALS estimate saturation, especially
in dense deciduous forests (Lang, 2010; Lang,
Arumäe, & Anniste, 2012). The CCALS is influenced
also by scanning parameters (Keränen, Maltamo, &
Packalen, 2016) and the ratio of the first echo count
to all echoes (P1/A) which characterizes pulse splitting
and is affected by phenology stages, especially for
deciduous forests (Wasser, Day, Chasmer, & Taylor,
2013). In NIR spectral region, broadleaved deciduous
tree species have a higher reflectance than needle leaf
species (Kuusk, Lang, & Kuusk, 2013) which can also
influence the P1/A. As a result, CC is at best estimated
from ALS data with a root mean square error of 10%

(Ferraz et al., 2015). Similar results are shown for
canopy closure estimates (Moeser, Roubinek,
Schleppi, Morsdorf, & Jonas, 2014). In practical
applications where CCALS or its analogues are used
for ALS-based wood volume models (Arumäe &
Lang, 2016b; Bouvier et al., 2015) an error of 10%
in CCALS causes about a 15% difference in predicted
wood volume.

The aim of this study was to test different CCALS

estimation methods in dense deciduous broadleaf-
dominated hemi-boreal forests stands. The ALS data
were from two phenological phases – before bud
swelling with leaves off (bBS) and after the final leaf
unfolding stage (aFLU) with leaves fully developed.
CC estimates from DHP (CCDHP) were chosen as the
reference for other methods. Additional tests were
carried out using CC estimates based on tree position
data and the crown radius model (CCRCrown). The
influence of scan angle, P1/A and plot location on
the CCALS estimates was investigated.

Materials and methods

Study site

The 15 × 15 km test site is located in south-eastern
Estonia, near Laeva (Lang, Arumäe, Lükk, & Sims,
2014). The terrain is rather flat. Half of the area is
covered by forests. The forests are of mixed species
and multi-layer structure is common, with a dense
understory layer of Padus avium Mill. and Corylus
avellana L. Dominant tree species are silver birch
(Betula pendula Roth), Norway spruce (Picea abies
L.), trembling aspen (Populus tremula L.), black alder
(Alnus glutinosa L.) and Norway spruce in the lower
layer. The most common site types are the
Aegopodium and Filipendula (Lõhmus, 2004) and
based on FAO-UNESCO, the soil types are mainly
fertile Calci Eutric Gleysols and Eutri Histic Gleysols.
The forest height can reach up to 37 m (typical height
in mature forests is 25–30 m) and the basal area is up
to 40 m2/ha according to forest inventory (FI) data.

The first dataset in the tests was FI data for 6185
stands. The FI data were used for studying the influ-
ence of deciduous species fraction on P1/A. The
majority of the stands were inventoried in 2013.
The average stand size was 2.0 ha and dominating
tree species are silver birch and trembling aspen with
a common second layer of Norway spruces. The
second dataset was based on 93 sample plots
extracted from the Estonian Network of Forest
Research (ENFR) database (Kiviste et al., 2015).
According to Kiviste et al. (2015) all the trees on
these plots were calipered, tree positions were
mapped and model trees were selected for crown
base height and height measurements. The rest of
the tree heights were estimated using diameter-height
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models based on sample tree measurements.
Dominating tree species in the ENFR plots are silver
birch and trembling aspen, with an average age of
59 years for silver birch and 65 years for trembling
aspen. The average height of the forests was 23 m and
basal area average was 25 m2/ha. The average relative
density (also known as stand stocking index)
was 81%.

ALS data

The ALS data were collected in spring (06 May 2013)
and summer (13 July 2013) by the Estonian Land
Board using the scanner Leica ALS50-II. The ALS
point density for bBS was 0.5 points/m2, the flight
altitude was 2400 m and ALS pulse footprint dia-
meter on the ground was 50 cm. Point density for
aFLU dataset was 2 points/m2, flight altitude 1800 m
and pulse footprint diameter on the ground was
40 cm in diameter. The bBS and aFLU datasets
were combined in one analysis to increase the range
of CCALS and to use the bBS data as a substitute for
possible defoliation effects. The VNA did not exceed
28°. The ALS data were processed using FUSION/
LDV freeware (McGaughey, 2014).

The CCALS was calculated using different height
breaks (z) with a 1-m step starting from 1.3 m and
ending at the live crown base height (HLCB) to reduce
the forest understory vegetation influence. The CCALS

was calculated as follows:

CCALS;z E ¼ 100 � PEðhp > zÞ
PE

(1)

where

P – the number of echoes,
hp – the pulse return height from the ground,
E – selection of the first or first of many (“1”) or all
(“A”) echoes.

The ALS-based live crown base height (HLCB_ALS)
was estimated with the model (2) taken from Arumäe
and Lang (2013), where HLCB_ALS_0 is calculated using
point cloud height distribution mode value (HMode)
and standard deviation (HStdev) excluding the points
with hp ≤ 1.3 m.

HLCB ALS 0 ¼ HMode � HStdev

2
(2)

Correlation between the measured HLCB and
HLCB_ALS_0 was strong (R2 = 0.79). However,
HLCB_ALS_0 overestimated HLCB on average by 6.8 m
and therefore a linear correction model (3) was
applied.

HLCB ALS ¼ 0:69 � HLCBALS0� 1:3 (3)

We tested also the influence of VNA correction on
CCALS depending on the selection of echoes and ALS

measurement geometry. To study the CCALS depen-
dence on scanning angle, first 38 of the ENFR plots
were selected where the scan angle was large (18–28°).
The sample plots occurred on the overlapping area of
scan swaths and, as the result of the flight plan, they
were scanned from two opposite directions (ALS_Left;
ALS_Right). The relationship between CCALS_Left and
CCALS_Right was analysed before and after the VNA
correction with the model by Korhonen and
Morsdorf (2014)

CCALS ¼ CCALS;1:3 1 � 0:0253 � θscan � Fmax; (4)

where

CCALS,1.3_1 – the CC estimate using the first or first of
many echoes,
θscan – mean scan angle (°),
Fmax – height of the highest echo above the digital
terrain model (m).

In pulse splitting analysis, both canopy and ground
returns were included to test the influence of tree
species on P1/A. The impact of foliage phenology on
the occurrence of returns within the canopy and the
corresponding P1/A was analysed in the ENFR plots
including only the pulse returns with hp > 1.3.

Digital hemispherical photographs

The DHP measurements were carried out in the sum-
mer of 2013. On 32 out of the 93 ENFR plots, DHP
measurements were carried out also in spring at the
time before bud swelling. Twelve photos per plot were
taken following the VALERI protocol (Validation of
Land European Remote Sensing Instruments, http://
www.avignon.inra.fr/valeri/). Three sampling points
were marked in all four cardinal points, with a 4-m
distance between each sample. For hemispherical
photos, we used a Nikon D5100 with the Sigma
4.5 mm F2.8 EX DC HSM Circular Fisheye lens and a
Canon EOS 5D with the Sigma 8 mm 1:3.5 EX DG
Fisheye lens. The HSP software (Lang, Kodar, &
Arumäe, 2013) was used for DHP processing. The
CCDHP for each plot was then calculated as an average
of CC estimates from 12 single photos. Pixels from the
view zenith angle of less than 9° were used to measure
CC (corresponds roughly to the first ring of LAI-2000).

Crown radius models

Two crown radius (RCrown) models were initially
tested – the first model was published by Jakobsons
(1970) and is based on stem diameter at breast height
(d). The second RCrown model (model 14 from Lang,
Nilson, Kuusk, Kiviste, & Hordo, 2007) is based on
tree height and d. Using the calculated RCrown values,
the CC (CCRCrown) estimate was calculated by mer-
ging all the crown shapes. The CCRCrown using
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Jakobsons (1970) model was 32–42% greater com-
pared to the CCRCrown calculated using model by
Lang et al. (2007). Additionally, the average CC for
all 93 plots with Jakobsons’ (1970) RCrown model was
50% greater than with the model by Nilson, Lang,
Kuusk, Anniste, and Lükk (2000) that relates
CC = 100·(0.898T+0.044) where T is stand relative
density. Therefore, Jakobsons’ (1970) model was
abandoned.

Tree crown vertical projections on the ground can be
represented as concentric rings of a particular radius in
the case of equal spacing of the trees. In natural stands,
however, distances between trees vary and, due to the
competition for light, branches grow more likely
towards open space. As a result, the overlaps between
tree crown projections decrease and CC increases. Since
tree positions in the ENFR plots were known, a model
from Lang and Kurvits (2007) was used to adjust crown
projections according to the neighbours of each tree,
while the area of each crown projection was fixed to that
of the circle with the predicted crown radius. This
model was able to draw more realistic crown shapes,
and a visual comparison of the adjusted crown projec-
tions with orthophotos showed a good agreement. For
each sample plot, all crown projections were then
merged into one polygon using QGIS to calculate the
CCRCrown. After the crown shape modification, CC
increased (mean CCCRown by 3% and the maximum
difference was 16%) compared to the circular crown
projections-based CC. We assumed that this also
increases the correlation with CCALS. We did not
apply edge correction (see, e.g., Lilleleht, Sims, &
Pommerening, 2014) and a small underestimation of
CC near a sample plot border is still possible. To study
the edge effect, a 2-m wide buffer was excluded from
outside the sample plots. The parts of crown projections
within the decreased sample plot were then extracted
and CCRCrown was estimated again. The CCRCrown esti-
mates were compared with the aFLU CCALS.

Manipulation of plot centre location

To estimate the stability of CCALS, the centre posi-
tions of the 93 ENFR plots were randomly dislocated
for 100 times within a radius of 10 m, which corre-
sponds roughly to the estimated maximum error in
the ENFR plot coordinate measurements. The
CCALS,1.3_A was calculated for each dislocated point
cloud sample and variation was analysed.

Error estimates

The mean error of estimate (MEE) was calculated as

MEE ¼ Σ X� Yð Þ=N (5)

and the root mean square error (RMSE) was calcu-
lated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

X � Yð Þ2=N
q

(6)

where X is the argument, Y is the dependent variable
and N is the number of observations.

Results

The shifting of the centre coordinate showed that the
CCALS,1.3_A estimates are rather stable concerning errors
in ALS point cloud sample locations. The standard error
of CCALS,1.3_A for the 93 ENFR plots was 0.15% and the
average interquartile range of CCALS,1.3_A was 2.2%. The
largest range of CCALS,1.3_A estimates was 23%, nine
sample plots had a CCALS,1.3_A range of larger than 10%
and the average range of CCALS,1.3_A was 6.1%.

There was a substantial influence of phenology on
the CCALS estimates. For bBS, the average CCALS,1.3_A

of the ENFR plots was about 20% smaller compared
to the average of aFLU conditions (Table 1).

The correlation of CCDHP with the first echoes-based
CCALS,1.3_1 was weaker (R

2 = 0.75, RMSE = 20.7%) than
with CCALS,1.3_A (R2 = 0.81, RMSE = 11.8%; Figure 1,
Table 1). When aFLU and bBS measurements were
tested separately, the smallest RMSE was found for
CCALS,1.3_A and CCDHP of aFLU flight and the R2 corre-
sponded to a moderate correlation.

The change in correlation between CCALS,z and
CCDHP when the height break was raised from
z = 1 to z = 5 m was not significant. Raising the
z even higher, up to 10 m, somewhat improved
the predictive power of the first echoes, but the
increase in R2 was small. The CCALS,LCB, estimated
at z = HLCB_ALS, had surprisingly only a weak
correlation (R2 = 0.15) with CCDHP for aFLU
dataset and no correlation for bBS measurements
(R2 = 0). This was most likely due to the ALS-
based HLCB model (2) not being able to predict the
HLCB for bBS dataset. The HMode for bBS data
occurred near the minimum height threshold of
1.3 m following the mode value of the pulse return
height distribution and the CCALS,LCB was substan-
tially overestimated. This was probably the result
of a dense forest understory and second layer of
spruces in many stands that caused pulse returns
from below the upper tree layer and flattened the
height distribution of pulse returns and changed
the position of HMode. Using the measured HLCB

Table 1. Relationships between CCDHP and CCALS,1.3 depend-
ing on the phenophase and selection of pulse return.

Phenophasea

CC1.3 using the first and
first of many echoes (%) CC1.3 using all echoes (%)

Mean RMSE MEE R2 Mean RMSE MEE R2

bBS 74.0 34.8 −31.7 0.64 59.7 19.3 −17.3 0.62
aFLU 93.9 14.0 −11.9 0.32 83.5 7.4 −1.5 0.37
Combined - 20.7 −17.1 0.75 - 11.8 −5.6 0.81

abBS: before bud swelling; aFLU: after final leaf unfolding.
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for z instead of the point cloud-based HLCB_ALS

improved the correlation of CCALS,LCB with CCDHP

(R2 = 0.22) when tested for aFLU dataset. We
found also that CCDHP was almost always smaller
than CCALS (Table 1, Figure 1). Since the gap
fraction estimation from DHP with the
LinearRatio (Cescatti, 2007) method that is used
in HSP software is an unbiased technique (Lang,
Kodar & Arumäe, 2013, Lang et al., 2017), the
CCALS is probably overestimated. However, in
our study we did not correct CCDHP for within
the crown gap fraction which would increase
aFLU CCDHP by a few percentages and thus estab-
lished a good correlation between the mean
CCALS,1.3_A and CCDHP.

The pulse splitting within the canopy showed also a
difference between aFLU and bBS datasets. The pulses
were splitting less (p-value < 0.01) and the share of the
first returns increased using aFLU data (P1/A = 0.82)
compared to the bBS dataset (P1/A = 0.76). This is also
one of the reasons for the systematically overestimated
CCALS for bBS data (Figure 1), since the number of
returns from the canopy increased.

The comparison of CCALS,1.3_1 in the ENFR plots
that were scanned twice indicated that at a large
VNA, the CC estimates for sample plots may vary
substantially when calculated from repeated scans
taken from different directions – the maximum dif-
ferences ranged up to 8%. The VNA correction
improved the CCALS,1.3_1 estimation (Figure 2) preci-
sion as appeared from the analysis of overlapping
scan swaths. The VNA correction also decreased
CCALS by 13% on average, but the scatter between
the repeated measurements remained considerable
(Figure 2(b)). The VNA uncorrected dataset
(Figure 2(a)) showed a slightly weaker correlation
between CCALS_Left and CCALS_Right (R2 = 0.81,
RMSE = 4.2%) compared to the VNA corrected data-
set (Figure 2(b); R2 = 0.89; RMSE = 3.8%); however,

the change in R2 was statistically insignificant when
tested using Sheskin’s (2000) statistical test.

The CCALS of all ENFR plots was then corrected
for the VNA and compared to CCDHP (Figure 3). The
scan angle correction decreased the MEE of the rela-
tionship between CCALS,1.3_1 and CCDHP from −12.8
to −4.7; however, the change in R2 was not significant
according to the statistical test (Sheskin, 2000). The
scan angle correction caused a systematic underesti-
mation of CCALS,1.3_A compared to CCDHP with MEE
increasing from −2.8 to 5.3, but the increase in R2 was
again not statistically significant.

The percentage of deciduous tree species in the
dominant layer of trees had no correlation with the
first echo ratio P1/A (R2 = 0) using the aFLU dataset.
Whereas P1/A had a negative moderate correlation
with stand relative density (R2 = 0.35) and a moderate
negative correlation with the ALS-based 80th height
percentile (HP80; R

2 = 0.56). The VNA had an influ-
ence on P1/A. The share of pulses giving only a single
echo increased with VNA ≥ 10° and the P1/A at VNA
≥ 16° was 2% larger compared to the near nadir P1/A
(p-value < 0.01 based on 379 stands scanned at nadir
and 420 stands scanned at VNA>16°).

In contrary to the expected relationship between
CCALS and tree crown-based CC, the concentric ring-
based CCRCrown showed no correlation with CCDHP or
CCALS. The neighbourhood corrected CCRCrown

showed a weak correlation with CCDHP (R2 = 0.14)
and also with CCALS,1.3_A (R2 = 0.22) and CCALS,1.3_1

(R2 = 0.14). Our test with the excluded 2-m-wide buffer
from outside the sample plots where the crown model
may have lacked the influence of external competition
did not show a marked increase in the correlations
with other CC estimates. The 2-m buffer zone exclu-
sion increased the average of CCRCrown by 2.7% and
increased the R2of the CCRCrown relationship with
CCDHP (R2 = 0.18), CCALS,1.3_A (R2 = 0.24) and
CCALS,1.3_1 (R2 = 0.16), but statistically the influence

Figure 1. First echoes-based canopy cover (CC) calculated at 1.3-m height break CCALS,1.3_1 saturates in dense forests in summer
(aFLU) (a) compared to all echoes-based CCALS,1.3_A (b).
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was insignificant (p-value > 0.05). The correlation of
CCRCrown with CCALS based on the measured HLCB was
weak (R2 = 0.02), but the mean values of the two CC
estimates (67.4% and 69.7%, correspondingly) were
closer than CCRCrown and CCALS,1.3_A (67.4% and
83.6%, correspondingly).

Discussion

The comparison of CCALS and CCDHP in the best-case
scenario had an RMSE of 11.8%, which is comparable
to the results of similar studies (Ahmed, Franklin,
Wulder, & White, 2015; Smith et al., 2009). The
relatively large RMSE is most likely the result of
measurement errors and comparison of different
variables as CC. For example, DHP is measuring
light that is penetrating the canopy and the tree
crowns are accounted as semi-transparent, as
opposed to the CCRCrown which accounts crowns as
solid shapes, but ALS-based measurements use the
NIR spectral region where also foliage is semi-

transparent. Also, the ALS observations are not
points, but samples with an area defined usually by
the laser beam divergence and flight altitude
(Baltsavias, 1999). Sample plot position errors also
propagate into CCALS and decrease the reliability of
the CC estimates. Although we found that CCALS,1.3_A

was usually not substantially influenced by the posi-
tioning errors of sample plots, this was probably due
to the ENFR plots being well-positioned in homoge-
neous parts of forest stands. On the other hand,
CCALS calculated for a sample plot using ALS point
clouds from different flight paths had an uncertainty
of up to 8% in CC units in the forests.

Somewhat surprisingly, there was only a weak
correlation between CCRCrown and CCALS,z. This is
most likely because CCRCrown and CCALS,z are differ-
ent by their definition or is because of the used RCrown

models, which were not able to predict accurately tree
crown radius in the dense stands. One reason might
be also the influence of understory trees, for which
there was no data to calculate CCRCrown estimates.

Figure 2. Comparison of CCALS estimated from the opposite direction flights using the first echoes (a) without VNA correction
and (b) using Korhonen and Morsdorf’s (2014) VNA correction model.

Figure 3. Influence of view nadir angle correction on CCALS,1.3 estimates using the first echoes (a) and using all echoes (b).
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However, there was not much of an improvement in
correlation when CCALS was estimated at measured
HLCB threshold to exclude the influence of understory
vegetation. Only the mean value of CCRCrown was in a
better agreement with CCALS,LCB compared to
CCALS,1.3. The correlation of CCRCrown with CCDHP

and CCALS,LCB did not show a significant improve-
ment after adjusting crown shapes, however, the
CCRCrown was estimated according to the competition
of neighbouring trees. It is possible that the tree
crown shapes vary in nature much more than pre-
dicted by the model, and in semi-naturally developed
forests, tree stems are not strictly vertical due to
competition during their growth. As a result, the
CC can be much larger in many plots compared to
the estimates based on the crown projections and
assumed vertical stems at tree stump locations.

In the dense forests, the CCALS was estimated
using the regular height break z = 1.3 m and satu-
rated using the first or first of many echoes at CC
greater than 80%, whereas the CCALS,z_A did not
saturate. There was not much of an influence on
CCALS from the increase in z until 10 m above the
ground or until the HLCB level was reached. Raising
the threshold higher than 1.3 m did improve the
predictive power of the first echoes, but overall, the
relationship between CCALS and CCDHP was still weak
and the change in the determination coefficient was
statistically insignificant. Using the ALS-based HLCB

as a threshold introduces additional errors in CC
caused by the errors in HLCB_ALS estimation. On the
other hand, the lack of sensitivity of CCALS to the
change in z is probably caused by the upper layer
dense canopy in the forests (images can be found in
the appendix in Lang et al., 2014), which captures
most of the pulse energy and thus relatively fewer
echoes from the lower layers down to the ground
vegetation are triggered. On the other hand, there is
a clear negative correlation between the leaf area
index of upper and lower canopy layers in forests
(Chianucci, Puletti, Venturi, Cutini, & Chiavetta,
2014; Kodar et al., 2011). In our test, DHPs were
taken always at 1.3 m above the ground and a denser
forest understory in the case of a smaller CC of the
upper layer can explain the weak correlation between
the values of CCALS calculated using HLCB and
CCDHP.

In addition to the selection of pulse returns and
discrimination threshold for the CC estimation, there
are also sampling problems and issues related to the
interaction between the lidar pulse and forest canopy.
The laser scanners measure at various VNAs and this
raises the question of representativity of higher-order
echoes in the case of small sample plots in tall forests.
With the VNA increase, the second and higher-order
returns are displaced horizontally by hdiff × tan(VNA),
where hdiff is the vertical distance between the first and

subsequent returns of the lidar pulse. For example, at
VNA = 25° and hdiff = 21 m, the displacement in the
horizontal direction is 9.8 m. Therefore when a pulse is
sent out at a large VNA, the first echo is triggered from a
plot or grid cell location and the following echoes would
be received in a shifted location, but their occurrence is
still determined by the part of the canopy that triggered
the first echo. This makes theCCALS estimate dependent
on the grouping of trees and sensitive to variation in
forest height. However, there was a positive correlation
between the VNA and canopy P1/A at larger scan angles
(VNA>15º) meaning fewer returns per pulse at the view
angles. The reasons for this may include the increase in
footprint size at larger scanning angles (Heritage &
Large, 2009; Korhonen, Korpela, Heiskanen &
Maltamo, 2011) and the fact that at large scan angles
the probability of seeing crown sides increases and so
does the path length through the canopy. The increased
path length within the forest canopy causes more scat-
tering which flattens the distribution of the received
energy leaving less chance for the scanner internal soft-
ware to distinguish more than just the first return from
emitted pulses.

Additionally to the VNA, the species composition
is known to influence the point cloud height distribu-
tion and therefore the estimates of CCALS (Wasser,
Day, Chasmer, & Taylor, 2013). The higher reflec-
tance of deciduous broadleaf tree species in NIR
should, in theory, result in a greater P1/A as the pulses
are being split less due to a stronger signal from the
top of the canopy. However, based on the 6185 forest
stands, the fraction of broadleaf trees in the upper
layer had no influence on P1/A, but P1/A was influ-
enced by the structural features of the forest – stand
density and height. The correlation between P1/A and
forest height is partially explained by the fact that the
Leica ALS50-II scanner can register up to four echoes
from a single pulse, with a minimum distance of
greater than 3.5 m between the echoes. Therefore,
the splitting of pulses can only occur in forests
where the tree height exceeds the multiple value of
the spacing distance. The P1/A, and therefore CCALS,
is also influenced by the scanner automatic gain con-
trol (AGC) (Vain, Yu, Kaasalainen, & Hyyppa, 2010)
which regulates the intensity of the emitted pulses,
but the effect was not studied in this research.
Similarly to AGC, which regulates the emitted energy,
the flight altitude and, in turn, the footprint size has
an effect on echo registration (Gaveau & Hill, 2003).
The increased pulse splitting found on ENFR plots
during bBS compared to aFLU phenophase may also
be one reason why all returns-based CCALS estimates
were still systematically greater compared to CCDHP

in spring, while there was a good agreement in sum-
mer. Similarly to Straatsma and Middelkoop (2006)
we found that there were fewer second or higher-
order returns per pulse in summer triggered by the
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canopy compared to leafless conditions in spring.
This is related to the higher NIR reflectance of the
foliage compared to leafless branches, which creates a
better-defined mode value into the distribution of
returned photons. However, CCALS and CCDHP both
showed a consistent increase in CC in accordance
with the foliage phenology. The phenology-driven
change in CCALS may be an indicator of the share
of deciduous species in the estimation of species
composition in forest stands.

To account for the complex influence of the VNA
on CCALS estimates, we applied the VNA correction
model published by Korhonen and Morsdorf (2014).
In general, there was a small increase in correlation
between the CCALS and CCDHP and a decrease in
RMSE, but the improvement was statistically insignif-
icant. The VNA correction of CCALS,1.3_A resulted in
a systematically smaller estimate compared to CCDHP

and is therefore not recommended for CCALS,1.3_A.
This indicates that the VNA correction models for
ALS-based CC estimates are dependent on the selec-
tion of pulse returns, since the model was originally
constructed for the first returns of laser pulses. For
future studies, a VNA correction model also for all
returns-based CCALS should be developed.

Conclusion

We analysed discrete-return ALS data from dense
deciduous broadleaf-dominated mixed forests for
CC estimation using references obtained from
tree crown models and DHP. The uncertainties in
the ALS-based CC estimates due to the errors in
sample plot location and sampling of point clouds
from different scans at large VNAs are roughly in
the same range and reach up to 8–10% in CC units
in the stands. Correction of VNA effects system-
atically decreased CC estimates, but did not
decrease variability and there was no improvement
in the correlation with CC estimated from DHPs.
A VNA effect correction model developed for the
first returns yields biased CC values when applied
to all returns-based CC estimates. There is not
much of an influence on ALS-based CC estimates
when selecting a threshold height from the range
between 1.3 m above the ground and the level of
the live crown base in the dense forests.

There was a good agreement between the CC
estimated from ALS data and DHPs, while both esti-
mates had only a weak correlation with the CC based
on crown radius models. The weak correlation was
probably related to the different meaning of the vari-
ables and failure of crown models to account for
single tree crown plasticity in the dense forests. The
increase in foliage density decreases the number of
returns per pulse triggered from the forest canopy.
This effect may be important for ALS-based

defoliation estimates which will be thus less sensitive
to an actual decrease in foliage density. In general, the
number of returns per pulse in the aFLU phenophase
ALS data was not dependent on the proportion of
broadleaf trees but only on forest height and stand
relative density. Finally, for the estimation of CC
using ALS data in the dense forests, we recommend
using the first returns and VNA effect correction or
all returns without the correction.

Acknowledgments

The authors would like to thank the Estonian Land Board
for the airborne lidar data. Data acquisition was financed
by the Estonian State Forest Management Centre. Ave
Kodar helped during field measurements. Data analysis
was supported by the Ministry of Education and Research
grant IUT21-4. The Estonian Network of Forest Research
Plots was supported by the Estonian State Forest
Management Centre and the Estonian Environmental
Investment Centre. The authors are also thankful for the
helpful comments from the anonymous reviewers.

Disclosure statement

No potential conflict of interest was reported by the
authors.

References

Ahmed, O.S., Franklin, S.E., Wulder, M.A., & White, J.C.
(2015). Characterizing stand-level forest canopy cover
and height using Landsat time series, samples of air-
borne LiDAR, and the random forest algorithm. ISPRS
Journal of Photogrammetry and Remote Sensing, 101, 89–
101. doi:10.1016/j.isprsjprs.2014.11.007

Andersen, H.-E., McGaughey, R.J., & Reutebuch, S.E.
(2005). Estimating forest canopy fuel parameters using
LIDAR data. Remote Sensing of Environment, 94, 441–
449. doi:10.1016/j.rse.2004.10.013

Arumäe, T., & Lang, M. (2013). A simple model to estimate
forest canopy base height from airborne lidar data.
Forestry Studies, 58, 46–56. doi:10.2478/fsmu-2013-0005

Arumäe, T., & Lang, M. (2016a). A validation of coarse
scale global vegetation height map for biomass estima-
tion in hemiboreal forests in Estonia. Baltic Forestry, 22
(2), 275–282. Retrieved from https://www.balticforestry.
mi.lt/bf/index.php?option=com_content&view=article&
catid=14&id=455

Arumäe, T., & Lang, M. (2016b). ALS-based wood volume
models of forest stands and comparison with forest
inventory data. Foresty Studies, 64, 5–16. doi:10.1515/
fsmu-2016-0001

Baltsavias, E.P. (1999). Airborne laser scanning: Basic rela-
tions and formulas. ISPRS Journal of Photogrammetry &
Remote Sensing, 54, 199–214. doi:10.1016/S0924-2716
(99)00015-5

Bouvier, M., Durrieu, S., Fournier, R.A., & Renaud, J.-P.
(2015). Generalizing predictive models of forest inven-
tory attributes using an area-based approach with air-
borne LiDAR data. Remote Sensing of Environment, 156,
322–334. doi:10.1016/j.rse.2014.10.004

EUROPEAN JOURNAL OF REMOTE SENSING 139

https://doi.org/10.1016/j.isprsjprs.2014.11.007
https://doi.org/10.1016/j.rse.2004.10.013
https://doi.org/10.2478/fsmu-2013-0005
https://www.balticforestry.mi.lt/bf/index.php?option=com_content%26view=article%26catid=14%26id=455
https://www.balticforestry.mi.lt/bf/index.php?option=com_content%26view=article%26catid=14%26id=455
https://www.balticforestry.mi.lt/bf/index.php?option=com_content%26view=article%26catid=14%26id=455
https://doi.org/10.1515/fsmu-2016-0001
https://doi.org/10.1515/fsmu-2016-0001
https://doi.org/10.1016/S0924-2716(99)00015-5
https://doi.org/10.1016/S0924-2716(99)00015-5
https://doi.org/10.1016/j.rse.2014.10.004


Bright, B.C., Hicke, J.A., & Hudak, A.T. (2012). Estimating
aboveground carbon stocks of a forest affected by moun-
tain pine beetle in Idaho using lidar and multispectral
imagery. Remote Sensing of Environment, 124, 270–281.
doi:10.1016/j.rse.2012.05.016

Cescatti, A. (2007). Indirect estimates of canopy gap frac-
tion based on the linear conversion of hemispherical
photographs: Methodology and comparison with stan-
dard thresholding techniques. Agricultural and Forest
Meteorology, 143, 1–12. doi:10.1016/j.agrformet.
2006.04.009

Chianucci, F., Puletti, N., Venturi, E., Cutini, A., &
Chiavetta, U. (2014). Photographic assessment of overs-
tory and understory leaf area index in beech forests
under different management regimes in Central Italy.
Forestry Studies, 61, 27–34. doi:10.2478/fsmu-2014-0008

Davies, O., & Pommerening, A. (2008). The contribution of
structural indices to the modelling of Sitka spruce (Picea
sitchensis) and birch (Betula spp.) crowns. Forest Ecology
and Management, 256, 68–77. doi:10.1016/j.
foreco.2008.03.052

Duncanson, L.I., Cook, B.D., Hurtt, G.C., & Dubayah, R.O.
(2014). An efficient, multi-layered crown delineation
algorithm for mapping individual tree structure across
multiple ecosystems. Remote Sensing of Environment,
154, 378–386. doi:10.1016/j.rse.2013.07.044

Ferraz, A., Mallet, C., Jacquemoud, S., Gonçalves, G.R.,
Tomé, M., Soares, P., . . . Bretar, F. (2015). Canopy
density model: A new ALS-derived product to generate
multilayer crown cover maps. IEEE Transactions on
Geoscience and Remote Sensing, 53, 6776–6790.
doi:10.1109/TGRS.2015.2448056

Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud, S.,
Gonçalves, G., Silva, C.A., . . . Pereira, L. (2016).
Airborne lidar estimation of aboveground forest biomass
in the absence of field inventory. Remote Sensing, 8(8),
1–18. doi:10.3390/rs8080653

Ferraz, A., Saatchi, S., Mallet, C., & Meyer, V. (2016). Lidar
detection of individual tree size in tropical forests.
Remote Sensing of Environment, 183, 318–333.
doi:10.1016/j.rse.2016.05.028

Gaveau, D.L.A., & Hill, R.A. (2003). Quantifying canopy
height underestimation by laser pulse penetration in
small-footprint airborne laser scanning data. Canadian
Journal of Remote Sensing, 29, 650–657. doi:10.5589/
m03-023

Guerra-Hernández, J., Görgens, E.B., García-Gutiérrez, J.,
Rodriguez, L.C.E., Tomé, M., & González-Ferreiro, E.
(2016). Comparison of ALS based models for estimating
aboveground biomass in three types of Mediterranean
forest. European Journal of Remote Sensing, 49, 185–204.
doi:10.5721/EuJRS20164911

Heritage, G.L., & Large, A.R.G. (2009). Principles of 3D
laser scanning. In G.L. Heritage & A.R.G. Large (Eds.),
Laser scanning for the environmental sciences (pp. 21–
34). Chichester: John Wiley & Sons.

Jakobsons, A. (1970). Sambandet mellan trädkronans dia-
meter och andra trädfaktorer, främst
brösthöjdsdiametern. [The correlation between the dia-
meter of tree crown and ohter tree factors – Mainly the
breastheight diameter]. Research Notes, 14, 75. In
Swedish with an English summary.

Jennings, S.B., Brown, N.D., & Sheil, D. (1999). Assessing
forest canopies and understorey illumination: Canopy
closure, canopy cover and other measures. Forestry, 72,
59–74. doi:10.1093/forestry/72.1.59

Jonckheere, I., Nackaerts, K., Muys, B., & Coppin, P.
(2005). Assessment of automatic gap fraction estimation
of forests from digital hemispherical photography.
Agricultural and Forest Meteorology, 132, 96–114.
doi:10.1016/j.agrformet.2005.06.003

Kandare, K., Ørka, H.O., Dalponte, M., Næsset, E., &
Gobakken, T. (2017). Individual tree crown approach
for predicting site index in boreal forests using airborne
laser scanning and hyperspectral data. International
Journal of Applied Earth Observation and
Geoinformation, 60, 72–82. doi:10.1016/j.jag.2017.
04.008

Keränen, J., Maltamo, M., & Packalen, P. (2016). Effect of
flying altitude, scanning angle and scanning mode on
the accuracy of ALS based forest inventory. International
Journal of Applied Earth Observation and
Geoinformation, 52, 349–360. doi:10.1016/j.
jag.2016.07.005

Kiviste, A., Hordo, M., Kangur, A., Kardakov, A.,
Laarmann, D., Lilleleht, A., . . . Korjus, H. (2015).
Monitoring and modelling of forest ecosystems: The
Estonian Network of Forest Research Plots. Forestry
Studies, 62, 26–38. doi:10.1515/fsmu-2015-0003

Kodar, A., Lang, M., Arumäe, T., Eenmäe, A., Pisek, J., &
Nilson, T. (2011). Leaf area index mapping with air-
borne lidar, satellite images and ground measurements
in Järvselja VALERI test site. Forestry Studies, 55, 11–32.
doi:10.2478/v10132-011-0099-1

Korhonen, L., Korhonen, K.T., Rautiainen, M., & Stenberg,
P. (2006). Estimation of forest canopy cover: A compar-
ison of field measurement techniques. Silva Fennica, 40,
577–588. doi:10.14214/sf.315

Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M.
(2011). Airborne discrete-return LIDAR data in the esti-
mation of vertical canopy cover, angular canopy closure
and leaf area index. Remote Sensing of Environment, 115,
1065–1080. doi:10.1016/j.rse.2010.12.011

Korhonen, L., & Morsdorf, F. (2014). Estimation of
canopy cover, gap fraction and leaf area index with
airborne laser scanning. In Forestry applications of
airborne laser scanning: Concepts and case studies
(pp. 397–417). Dordrecht: Springer. doi:10.1007/978-
94-017-8663-8

Kuusk, A., Lang, M., & Kuusk, J. (2013). Database of
optical and structural data for the validation of forest
radiative transfer models. In Light scattering reviews
(Vol. 7, pp. 109–148). Berlin, Heidelberg: Springer.
doi:10.1007/978-3-642-21907-8

Kuusk, A., & Nilson, T. (2000). A directional multispectral
forest reflectance model. Remote Sensing of Environment,
72, 244–252. doi:10.1016/S0034-4257(99)00111-X

Lang, M. (2010). Estimation of crown and canopy cover
from airborne lidar data. Forestry Studies, 52, 5–17.
doi:10.2478/v10132-011-0079-5

Lang, M., Arumäe, T., & Anniste, J. (2012). Estimation of
main forest inventory variables from spectral and air-
borne lidar data in Aegviidu test site, Estonia. Forestry
Studies, 56, 27–41. doi:10.2478/v10132-012-0003-7

Lang, M., Arumäe, T., Lükk, T., & Sims, A. (2014).
Estimation of standing wood volume and species com-
position in managed nemoral multi-layer mixed forests
by using nearest neighbour classifier, multispectral satel-
lite images and airborne lidar data. Forestry Studies, 61,
47–68. doi:10.2478/fsmu-2014-0010

Lang, M., Kodar, A., & Arumäe, T. (2013). Restoration of
above canopy reference hemispherical image from below

140 T. ARUMÄE AND M. LANG

https://doi.org/10.1016/j.rse.2012.05.016
https://doi.org/10.1016/j.agrformet.2006.04.009
https://doi.org/10.1016/j.agrformet.2006.04.009
https://doi.org/10.2478/fsmu-2014-0008
https://doi.org/10.1016/j.foreco.2008.03.052
https://doi.org/10.1016/j.foreco.2008.03.052
https://doi.org/10.1016/j.rse.2013.07.044
https://doi.org/10.1109/TGRS.2015.2448056
https://doi.org/10.3390/rs8080653
https://doi.org/10.1016/j.rse.2016.05.028
https://doi.org/10.5589/m03-023
https://doi.org/10.5589/m03-023
https://doi.org/10.5721/EuJRS20164911
https://doi.org/10.1093/forestry/72.1.59
https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1016/j.jag.2017.04.008
https://doi.org/10.1016/j.jag.2017.04.008
https://doi.org/10.1016/j.jag.2016.07.005
https://doi.org/10.1016/j.jag.2016.07.005
https://doi.org/10.1515/fsmu-2015-0003
https://doi.org/10.2478/v10132-011-0099-1
https://doi.org/10.14214/sf.315
https://doi.org/10.1016/j.rse.2010.12.011
https://doi.org/10.1007/978-94-017-8663-8
https://doi.org/10.1007/978-94-017-8663-8
https://doi.org/10.1007/978-3-642-21907-8
https://doi.org/10.1016/S0034-4257(99)00111-X
https://doi.org/10.2478/v10132-011-0079-5
https://doi.org/10.2478/v10132-012-0003-7
https://doi.org/10.2478/fsmu-2014-0010


canopy measurements for plant area index estimation in
forests. Forestry Studies, 59, 13–27. doi:10.2478/fsmu-
2013-0008

Lang, M., & Kurvits, V. (2007). Restoration of tree crown
shape for canopy cover estimation. Forestry Studies, 46,
23–34. doi:10.2478/v10132-011-0079-5

Lang, M., Nilson, T., Kuusk, A., Kiviste, A., & Hordo, M.
(2007). The performance of foliage mass and crown radius
models in forming the input of a forest reflectance model:
A test on forest growth sample plots and Landsat 7 ETM+
images. Remote Sensing of Environment, 110, 445–457.
doi:10.1016/j.rse.2006.11.030

Lang, M., Nilson, T., Kuusk, A., Pisek, J., Korhonen, L., &
Uri, V. (2017). Digital photography for tracking the
phenology of an evergreen conifer stand. Agricultural
and Forest Meteorology, 246, 15–21. In press.
doi:10.1016/j.agrformet.2017.05.021

Leica. (2007). Leica ALS50-II airborne laser scanner pro-
duct specifications. Retrieved from http://www.nts-info.
com/inventory/images/ALS50-II.Ref.703.pdf

Lilleleht, A., Sims, A., & Pommerening, A. (2014). Spatial
forest structure reconstruction as a strategy for mitigat-
ing edge-bias in circular monitoring plots. Forest Ecology
and Management, 316, 47–53. doi:10.1016/j.
foreco.2013.08.039

Lõhmus, E. (2004). Estonian site types (pp. 80). Tartu: Eesti
Loodusfoto.

McGaughey, R.J. (2014). FUSION/LDV: Software for
LIDAR data analysis and visualization. March 2014 –
FUSION, version 3.42. United States Department of
Agriculture Forest Service Pacific Northwest Research
Station. http://forsys.cfr.washington.edu/fusion/
FUSION_manual.pdf

Moeser, D., Roubinek, J., Schleppi, P., Morsdorf, F., &
Jonas, T. (2014). Canopy closure, LAI and radiation
transfer from airborne LiDAR synthetic images.
Agricultural and Forest Meteorology, 197, 158–168.
doi:10.1016/j.agrformet.2014.06.008

Mongus, D., & Žalik, B. (2015). An efficient approach to
3D single tree-crown delineation in LiDAR data. ISPRS
Journal of Photogrammetry and Remote Sensing, 108,
219–233. doi:10.1016/j.isprsjprs.2015.08.004

Müller, J., & Vierling, K. (2014). Assessing biodiversity by
airborne laser scanning (pp. 357–374). Dordrecht:
Springer. doi:10.1007/978-94-017-8663-8

Næsset, E. (1997a). Determination of mean tree height of
forest stands using airborne laser scanner data. ISPRS
Journal of Photogrammetry & Remote Sensing, 52, 49–56.
doi:10.1016/S0924-2716(97)83000-6

Næsset, E. (1997b). Estimating timber volume of forest
stands using airborne laser scanner data. Remote
Sensing of Environment, 61, 246–253. doi:10.1016/
S0034-4257(97)00041-2

Nilson, T., & Kuusk, A. (2004). Improved algorithm for
estimating canopy indices from gap fraction data in
forest canopies. Agricultural and Forest Meteorology,
124, 157–169. doi:10.1016/j.agrformet.2004.01.008

Nilson, T., Lang, M., Kuusk, A., Anniste, J., & Lükk, T.
(2000). Forest reflectance model as an interface between
satellite images and forestry databases. In Remote sensing

and forest monitoring. IUFRO conference (pp. 462–476).
Luxembourg: Office for Official Publications of the
European Communities.

Patenaude, G., Hill, R.A., Milne, R., Gaveau, D.L.A., Briggs,
B.B.J., & Dawson, T.P. (2004). Quantifying forest above
ground carbon content using LiDAR remote sensing.
Remote Sensing of Environment, 93, 368–380.
doi:10.1016/j.rse.2004.07.016

Popescu, S.C., Zhao, K., Neuenschwander, A., & Lin, C.
(2011). Satellite lidar vs. small footprint airborne lidar:
Comparing the accuracy of aboveground biomass esti-
mates and forest structure metrics at footprint level.
Remote Sensing of Environment, 115, 2786–2797.
doi:10.1016/j.rse.2011.01.026

Purves, D.W., Lichstein, J.W., & Pacala, S.W. (2007).
Crown plasticity and competition for canopy space: A
new spatially implicit model parameterized for 250
North American tree species. PLOS One, 2(9), 1–11.
doi:10.1371/journal.pone.0000870

Rautiainen, M., Stenberg, P., & Nilson, T. (2005).
Estimating canopy cover in Scots pine stands. Silva
Fennica, 39(1), 137–142. doi:10.14214/sf.402

Sheskin, D.J. (2000). Parametric and nonparametric statis-
tical procedures (2nd ed., pp. 779–783). Boca Raton:
Chapman & Hall/CRC.

Smith, A.M.S., Anderson, J., & Fladeland, M. (2008). Forest
canopy structural properties. In Field measurements for
forest carbon monitoring (pp. 179–196). New York, NY:
Springer. doi:10.1007/978-1-4020-8506-2

Smith, A.M.S., Falkowski, M.J., Hudak, A.T., Evans, J.S.,
Robinson, A.P., & Steele, C.M. (2009). A cross-compar-
ison of field, spectral, and lidar estimates of forest
canopy cover. Canadian Journal of Remote Sensing, 35,
447–459. doi:10.5589/m09-038

Solberg, S., Brunner, A., Hanssen, K.H., Lange, H., Næsset,
E., Rautiainen, M., & Stenberg, P. (2009). Mapping LAI
in a Norway spruce forest using airborne laser scanning.
Remote Sensing of Environment, 113, 2317–2327.
doi:10.1016/j.rse.2009.06.010

Spurr, S.H. (1948). Aerial photographs in forestry (pp. 340).
New York, NY: Ronald Press.

Straatsma, M.W., & Middelkoop, H. (2006). Airborne laser
scanning as a tool for lowland floodplain vegetation
monitoring. Hydrobiologia, 565, 87–103. doi:10.1007/
s10750-005-1907-5

Vain, A., Yu, X., Kaasalainen, S., & Hyyppä, J. (2010).
Correcting airborne laser scanning intensity data for
automatic gain control effect. IEEE Geoscience and
Remote Sensing Letters, 7, 511–514. doi:10.1109/
LGRS.2010.2040578

Vastaranta, M., Holopainen, M., Yu, X., Hyyppä, J.,
Hyyppä, H., & Viitala, R. (2011). Predicting stand-thin-
ning maturity from airborne laser scanning data.
Scandinavian Journal of Forest Research, 26, 187–196.
doi:10.1080/02827581.2010.547870

Wasser, L., Day, R., Chasmer, L., & Taylor, A. (2013).
Influence of vegetation structure on lidar-derived
canopy height and fractional cover in forested riparian
buffers during leaf-off and leaf-on conditions. PLOS
One, 8, 1–13. doi:10.1371/journal.pone.0054776

EUROPEAN JOURNAL OF REMOTE SENSING 141

https://doi.org/10.2478/fsmu-2013-0008
https://doi.org/10.2478/fsmu-2013-0008
https://doi.org/10.2478/v10132-011-0079-5
https://doi.org/10.1016/j.rse.2006.11.030
https://doi.org/10.1016/j.agrformet.2017.05.021
http://www.nts-info.com/inventory/images/ALS50-II.Ref.703.pdf
http://www.nts-info.com/inventory/images/ALS50-II.Ref.703.pdf
https://doi.org/10.1016/j.foreco.2013.08.039
https://doi.org/10.1016/j.foreco.2013.08.039
http://forsys.cfr.washington.edu/fusion/FUSION_manual.pdf
http://forsys.cfr.washington.edu/fusion/FUSION_manual.pdf
https://doi.org/10.1016/j.agrformet.2014.06.008
https://doi.org/10.1016/j.isprsjprs.2015.08.004
https://doi.org/10.1007/978-94-017-8663-8
https://doi.org/10.1016/S0924-2716(97)83000-6
https://doi.org/10.1016/S0034-4257(97)00041-2
https://doi.org/10.1016/S0034-4257(97)00041-2
https://doi.org/10.1016/j.agrformet.2004.01.008
https://doi.org/10.1016/j.rse.2004.07.016
https://doi.org/10.1016/j.rse.2011.01.026
https://doi.org/10.1371/journal.pone.0000870
https://doi.org/10.14214/sf.402
https://doi.org/10.1007/978-1-4020-8506-2
https://doi.org/10.5589/m09-038
https://doi.org/10.1016/j.rse.2009.06.010
https://doi.org/10.1007/s10750-005-1907-5
https://doi.org/10.1007/s10750-005-1907-5
https://doi.org/10.1109/LGRS.2010.2040578
https://doi.org/10.1109/LGRS.2010.2040578
https://doi.org/10.1080/02827581.2010.547870
https://doi.org/10.1371/journal.pone.0054776

	Abstract
	Introduction
	Materials and methods
	Study site
	ALS data
	Digital hemispherical photographs
	Crown radius models
	Manipulation of plot centre location
	Error estimates

	Results
	Discussion
	Conclusion
	Acknowledgments
	Disclosure statement
	References



