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Abstract 

 
Airborne laser scanning (ALS) has been used in recent years to acquire accurate remote-sensing material for 

carring out practical forest inventories. Still, much of the information needed in forest management planning 

must be collected in the field. For example, forest management proposals are often determined in the field by 

an expert. In the present paper, statistical features extracted from ALS data were used in logistic regression 

models and in nonparametric k-MSN estimation to predict the thinning maturity of stands. The research 

material consisted of 381 treewise measured circular plots in young and advanced thinning stands from the 

vicinity of Evo, in southern Finland. Timing of thinning was determined in the field by an expert and coded 

as a binary variable. Models were developed (1) to locate stands that will reach thinning maturity within the 

next 10-year period, and separately (2) for stands in which commercial thinning should be done immediately. 

For comparison purposes, logistic regression models were formulated from accurately measured stand 

characteristics. Logistic regression models based on ALS features predicted the thinning maturity with a 

classification accuracy of 79% (1) and 83% (2). The respective percentages were 66% and 83% with models 

based on stand characteristics and 70% and 86% with k-MSN. The study showed that ALS data can be used 

to predict stand-thinning maturity in a practical way.   

 

Key words: airborne laser scanning, forest management, k-MSN, logistic regression, thinning 
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1. Introduction 

 

In Finland, information for forest management planning is collected in two phases. In the first phase, 

inventory of the stand characteristics is carried out, and in the second, the data are augmented with 

information collected in the field. Information collected in the field includes forest site types, 

biodiversity targets and forest management proposals. An area-based airborne laser-scanning (ALS) 

inventory method (Naesset 2002) has been introduced for practical forest stand characteristic 

inventories in Finland. The method uses statistical features extracted from the ALS data in addition 

to aerial photographs, and the estimation of stand characteristics is based on nonparametric 

estimation methods (Maltamo et al., 2006). ALS is the most accurate remote-sensing (RS) 

technique for forest inventory, providing relative accuracies ranging between 10% and 20% at the 

stand level for mean volume (e.g. Hyyppä & Hyyppä, 1999; Næsset, 2002; Maltamo et al., 2006). 

The current data acquisition cost is comparable to that of the traditionally used inventory method – 

standwise field inventory (SWFI) – which is now being replaced. ALS devices providing small-

footprint diameters (10–30 cm) allow accurate height determination of the forest canopy (e.g. 

Næsset, 1997; Magnussen & Boudewyn, 1998; Magnussen et al., 1999; Means et al., 1999). 

Although ALS inventory provides accurate estimates for stand characteristics, much of the 

additional information needed in forest management planning must be collected in the field, e.g. 

forest management proposals. Forest management planning has yet to make the most of the 

information obtained by ALS and better linking methods should be studied.  

 

Commercial thinnings are management practices in which both the silvicultural and economic 

aspects are taken into account. From the silvicultural point of view, the goal of thinning is to 

provide enough growing space and thus improve the vitality of the future crop trees. The timing and 

intensity of thinning are always affected by the previous management of the stand.  Harvest 

schedules and timing of forest operations are selected so that the utility of the decision maker is 

maximized. The decision maker is usually assumed to maximize the net present value (NPV) of the 

forest area or stand. General guidelines for timing of thinning and clear-cuts are presented as 

recommendations for good silviculture (Recommendations of Tapio…, 2006), which are based on 

growth and yield studies. In practical forest management planning, stand-thinning maturity is 

determined in the field by a forest manager and decisions are based on the above-mentioned 

guidelines, spatial distributions of trees and vigour of the tree crowns. When forest management 

calculation systems are applied, the thinning maturity is determined by the basal area (BA) or stem 

number and dominant height (HDOM) via thinning curves as the clear-cutting maturity is 

determined by the age or mean diameter (Recommendations of Tapio…, 2006). When timing of 

harvest is proposed computationally, these proposals include a degree of uncertainty and are often 

replaced by proposals done in the field. This is mainly caused by the incapability of forest 

management calculation systems to predict stand spatial distributions of trees and vigour of the 

living crowns, i.e. the silvicultural aspects of the thinning are ignored. Delayed thinning or incorrect 

harvest decisions may result in growth and income losses for forest owners (Haara & Korhonen, 

2004).  

 

A few studies (e.g. Hyvönen, 2002; Vastaranta, 2006) have addressed the convergence of thinning 

decisions determined in the field and produced computationally. More studies have been done to 

clarify the reliability of computationally determined thinning proposals when these are made from 

forest stand characteristics that include uncertainty (e.g. Ojansuu et al., 2002; Haara & Korhonen, 

2004; Vanhatalo 2010). The effects of ALS inventory and SWFI errors have previously been 

examined (e.g. by Eid et al. 2004, Holopainen & Talvitie, 2006; Holopainen et al., 2010) with 

respect to the timing of harvests and the NPV of harvest outturns. In these studies the basic 

assumption was that erroneous inventory data result in less than optimal timing of harvests, which 



leads to losses in harvest revenues. Holopainen et al. (2010) showed that input data accuracy 

significantly affects both harvest timing and harvest revenue NPV. With respect to harvest timing, 

the inaccurate inventory data resulted in an error in thinning or clear-cutting timing, ranging from 

6.5 to 10.3 years, depending on input data source and simulation methodology. With respect to 

simulated harvest revenue NPV, the inaccurate inventory data resulted in a relative error ranging 

from 28.2% to 57%. Ojansuu et al. (2002) and Vastaranta (2006) studied the effects of erroneous 

input data and errors in growth models on thinning proposals made by the forest management 

calculation system. Haara and Korhonen (2004) studied the effects of various error sources on 

forest management decisions in updated SWFI data. In the above-mentioned studies, errors in input 

data have had the most severe effects. Vanhatalo (2010) searched for tolerable error intervals for 

input stand characteristics, for which the next simulated forest operation would still be correct.  

 

In many previous studies RS material has been used in the detection of forest operations, such as 

thinning or clear-cuttings (e.g.Varjo 1996, Hyvönen & Anttila 2006, Yu et al. 2004, Hyvönen et al. 

2010). Timing of forest management operations with RS material has been examined in only a few 

studies. Landsat TM satellite images and stand register data have been used in nonparametric k–

nearest neighbour (k-NN) estimation of forest stand characteristics and forest management actions 

(Hyvönen, 2002). Root-mean-squared errors (RMSEs) achieved for stand characteristics, e.g. 42.1% 

for mean volume, were much higher than RMSEs achieved in several ALS studies (e.g. Naesset, 

2002; Maltamo et al., 2006; Holopainen et al., 2008). The classification accuracies for forest 

management operations were 61.3% for thinnings and 64.1% for clear-cuttings (Hyvönen, 2002). 

Pesonen et al. (2007) used national forest inventory data and Landsat TM satellite images to locate 

stands needing precommercial thinning. In their study, stand precommercial thinning need was 

correctively classified with timing in 58% and without timing in 74% of stands. Precommercial 

thinning need has also been estimated with ALS data combined with information from forest 

management plans (Närhi et al. 2008). Närhi et al. used three urgency classes for forest 

management operations and the classification accuracy varied from 63.6% to 85.7% with overall 

accuracy of 71.8%.  

 

Information provided by ALS offers new perspectives for assessing stand-thinning maturity, and 

since ALS is becoming a widely popular method for forest inventory, these tools could be adopted 

for practical forest management planning. As a method, ALS provides direct information from the 

highest parts of the tree crown and structure of the forest canopy. ALS-based estimates for crown 

closure, leaf-area index (LAI) or crown coverage have been utilized in many studies (Means et al., 

1999; Holmgren et al., 2003; Hopkinson & Chasmer, 2009). Basically, variation in the penetration 

of laser pulses describes the variation in density of the crowns (Hirata et al., 2009). For practical 

forest inventory, statistical features are extracted from the ALS data. These include penetration as 

vegetation laser pulse returns versus total returns, height percentiles of the distribution of canopy 

heights, and canopy cover percentile as a proportion of laser returns below a given percentage of 

total height. From these, features such as penetration and canopy cover percentiles are used to 

predict LAI and crown closure with relatively good accuracy (e.g. Hopkinson & Chasmer, 2009; 

Jensen et al., 2008). These features probably correlate well with stand-thinning maturity.   

 

The objective of the present study was to test the accuracy of the thinning maturity predictions 

determined from ALS data with canopy-based statistical features. Logistic regression models and 

nonparametric k-most similar neighbour (k-MSN) estimation were used. Reference suggestions for 

stand-thinning maturity and the timing of thinning were determined in the field. For comparison, 

logistic regression models were also formulated using accurate field-measured characteristics such 

as HDOM and BA, on which thinning proposals are usually based.  

 



 

2. Material and methods 

 

Study area 

 

The study area is in an app. 2000-ha managed forest area located in the vicinity of Evo, Finland 

(61.19° N, 25.11° E, Fig 1.).  The area is dominated by coniferous tree species, namely Scots pine 

(Pinus sylvestris L.) (52%) and Norway Spruce (Picea abies (L.) H. Karst.) (31%). Classified by 

stand development class, the area consists mainly of young thinning stands (26%), advanced 

thinning stands (40%) and mature stands (23%). The corresponding proportions of forest site type 

are as follows: grass-herb sites (8%), moist sites (71%), dry sites (19%) and poor sites (2%).  

 

 
Figure 1. Location of the study area. 

 

Field measurements and determination of forest management actions 

 

The research material consisted of 381 tree-level measured fixed-radius (10 m) plots located in 

young and advanced thinning stands. The plots were located with a Trimble's GEOXM 2005 Global 

Positioning System (GPS) device (Trimble Navigation Ltd., Sunnyvale, CA, USA), and the 

locations were postprocessed with local base station data, resulting in an average error of app. 0.6 m. 

Tree-level field measurement data from these fixed-radius (10 m) field plots were collected in 2007, 

2008 and 2009. The following variables were measured from trees having a diameter-at-breast 

height (dbh) of over 5 cm: location, tree species, dbh and height. BA and HDOM were computed 

based on accurate field measurements. The field plots are henceforth referred to as stands. 

 



 
Figure 2. Thinning proposals and timings determined in the field. 

 

Proposals for forest management actions were determined in the field for all 381 stands in winter 

2009 (Fig 2.). The studied proposals included first commercial thinning and later thinning. Timing 

of thinning is dependent on both the silvicultural and economic aspects and affects the entire forest 

management chain. Timing of the determined thinning was classified as immediate, 1-5 years or 6-

10 years. If there was no thinning proposal, it was interpreted as a rest. Thinnings were proposed for 

228 stands, as the next forest management action for a 10-year planning period. These proposals 

included 89 first thinnings and 139 later thinnings. Immediate thinning proposals included 35 first 

and 53 later thinnings. Stands were randomly divided for modelling (281) and validation (100). 

Statistics of stand characteristics describing thinning maturity are presented in Table 1. 

 

Table 1. Statistics of stand characteristics describing thinning maturity in test and modelling data. 

n MIN MEAN MAX SD

TEST BA, m2ha-1 100 3.2 18.8 36.2 8.1

TEST HDOM, m 100 8.5 17.9 27.8 4.1

MODELLING BA, m2ha-1 281 2.5 19.6 45.6 7.7

MODELLING HDOM, m 281 7.4 17.9 44.6 4.3  

Acquisition and Processing of ALS Data 

The ALS data were acquired on July 2009 with an Optech 3100 laser scanner (Optech Inc., 

Vaughan, Ontario, Canada). The flying altitude was 400 m. The density of the returned pulses 

within the plot was approximately 10 points per m2. The ALS data were first classified into ground 

and nonground points, using the standard approach of the TerraScan-based method explained in 

Axelsson (2000). A digital terrain model (DTM) was then developed, using classified ground points, 

and laser heights above the ground (normalized height or canopy height) were calculated by 

subtracting the ground elevation from the laser measurements. Canopy heights close to zero were 

considered as ground returns and those greater than 2 m as vegetation returns. The intermediate data 

between them were considered as returns from ground vegetation or bushes. Only vegetation returns 

were used for ALS feature extraction. Several features were extracted from the vegetation returns 

for plot. They included the maximum laser hit of the plot, mean, standard deviation and coefficient 

of variation of the canopy heights, penetration as vegetation returns versus total returns, height 

percentiles of the distribution of canopy heights from 10% to 100% at intervals of 10%, and canopy 

cover percentile as a proportion of laser returns below a given percentage (from 10% to 100% at 

10% intervals) of the total height (Table 2.).  

 



Table 2. ALS features used. 

Feature Description

Hmax Maximum laser height

Hmean Arithmetic mean of laser heights

penetration Proportion of vegetation hits

CV Coefficient of variation

h10-90 Percentiles of canopy height distribution

p10-90 Canopy cover percentile as proportion returns below certain percentages of total height  
 

 

Logistic regression 

 

The probability of the stand-thinning maturity was modelled with multible logistic regression, using 

the function glm in the R statistical package (R Development Core Team, 2007). Logistic regression 

is commonly used in modelling the probability of  an event’s occurrence. In logistic regression, 

logit transformation is used to make the relationship between the response probability and the 

explanatory variables linear. The multiple logistic regression model is expressed as follows: 

 

logit(p) = ln[p/(1-p)] = β0 + β1x1 + β2x2 +….+ βnxn    (1) 

 

where p is the probability that an event will occur and x1…xn are the variables explaining the 

probability. The predicted probabilities are calculated by transforming back to the original scale:  

 

p = exp(logit(p))/[1 + exp(logit(p))].     (2) 

 

 For selecting the independent variables in the models, stepwise logistic regression was applied with 

both forward and backward directions. The maximum number of steps to be considered was 1000 

and the used multiple of the number of degrees of freedom for the penalty was log (n).   
 

k-MSN 

 

Nonparametric estimation methods are one alternative for predicting stand-thinning maturity if 

there is thinning maturity determined in the ground truth. The nonparametric estimation method 

applied in practical forest stand characteristic inventory in Finland is k-MSN (Maltamo et al. 2006).  

In k-MSN, the similarity is based on canonical correlations and the Mahalanobis distance (Moeur & 

Stage, 1995). The benefit of the MSN method is that the similarity measure can be solved 

analytically. The k-MSN method is the same as MSN except that it takes the k nearest observations 

into account. The R yaImpute library (Crookston & Finley, 2007) was applied in the k-MSN 

estimations.  

 

Before k-MSN estimation, linear transformations were done for all the ALS features; the 

transformations included x2, sqrt(x), 1/x and log(x). Automatic feature selection was then carried 

out, using the simple genetic algorithm (GA) presented by Goldberg (1989) and implemented in the 

R GALGO library (Trevino & Falciani, 2006). The GA process begins by generating an initial 

population of strings (chromosomes or genomes) that consists of separate features (genes). The 

strings evolve during a user-defined number of iterations (generations). The evolution includes the 

following operations: selecting strings for mating using a user-defined objective criterion (better if 

more copies are in the mating pool), letting the strings in the mating pool swap parts (crossing over), 

causing random noise (mutations) in the offspring (children) and passing the resulting strings to the 



next generation. GA was used previously in ALS feature selection for nonparametric estimation 

with promising results (Holopainen et al., 2008). 
 

Prediction of stand-thinning maturity  
 

Predictions were carried out for two different practical scenarios: 

1) to separate stands in which thinning was proposed for the next 10-year interval from stands 

without a thinning proposal. 

2) to separate stands in which thinning should be done immediately from stands with 

nonurgent  or without any thinning proposal  in the next 10-year interval 

 

Stand-thinning proposals were coded as a binary variable. In the first case, the binary variable was 

defined as one (1) if the thinning was proposed to be done during the next 10 years in the field or 

zero (0) if no thinning was proposed for the next 10 years. In the second case, the binary variable 

was defined as one (1) if thinning was proposed as immediate and (0) if thinning was proposed for 

the next 10 years, but was not urgent or there were no proposed thinnings for the next 10 years. If 

the predicted probability of the thinnings was over 0.5 it was interpreted as being necessary. 

Classification accuracy was determined with a test dataset, and the thinning proposals determined in 

the field were used as references. The accuracy of the predictions was evaluated by calculating the 

classification accuracy percentage and kappa value. 
 

 

3. Results 

 

The logistic regression models were constructed and k-MSN estimation was performed to predict 

the probability of the stand-thinning maturity and to classify the stand-thinning maturity phase. The 

proposed stand-thinning need during the next 10 years was predicted correctly with an overall 

accuracy of 79% (kappa = 0.58) with logistic regression. In the model, the ALS-derived statistical 

features Hmax, Hmean, h50, h60, p20 and p70 best accounted for the probability of thinning (Table 

3). The importance of stand’s main tree species and site-class information acquired from the field 

measurements was tested by including them in the preliminary variables from the field 

measurements. Still, they were not selected for the final model. The GA selected eight features for 

k-MSN estimation. The k-MSN classified 70% (kappa = 0.40) of the stands in this case correctly.  

 

Computationally determined thinning maturity is based on stand HDOM and BA. The logistic 

regression model based on treewise-measured BA, HDOM, site type and tree species as 

independent variables was constructed for comparison with ALS-feature-based estimations (Table 

3). With the model based on accurate characteristics measured in the field, the proposed stand-

thinning need during the next 10 years was predicted correctly with an overall accuracy of 66% 

(kappa = 0.30). The ALS-feature-based logistic regression model worked significantly better.  
 

 

The need for immediate stand thinning was detected correctly with an overall accuracy of 83% 

(kappa = 0.4) using a logistic regression model based on ALS features. In the logistic regression 

model the ALS-derived features penetration and h90 best accounted for the probability of 

immediate thinning (Table 4). Slighlty better results were achieved with k-MSN estimation. It 

classified 86% (kappa = 0.55) of the immediate thinning stands correctly. It should be noted that in 

this case, results with the same accuracy level as the ALS feature-based estimations were obtained 

with a logistic model using field-measured BA, HDOM and tree species as independent variables 

(Table 4). If these variables are modelled first as in practical forest inventory, slightly inaccurate 

results would probably be obtained.   



 

Table  3. Predictors used in logistic regression models and k-MSN estimation for the probability that the 

stand would need thinning during the next 10 years (n = 100). The symbol “•” means that the feature is used 

in k-MSN estimation. 

Thinnings in next 10 years k -MSN

Predictor Estimate SE z value Pr(> |z|) Estimate SE z value Pr(> |z|) 

intercept 13.84 2.86 4.83 0.00 1.49 0.71 2.10 0.04

Hmax 0.67 0.12 5.48 0.00

Hmean -1.86 0.40 -4.67 0.00

h50 2.19 0.61 3.61 0.00

h60 -1.54 0.55 -2.79 0.01

h20 -5.83 1.25 -4.66 0.00

h70 -11.76 3.00 -3.92 0.00

pine -1.70 0.37 -4.57 0.00

spruce -0.55 0.47 -1.18 0.24

BA 0.12 0.02 5.05 0.00

HDOM -0.13 0.04 -3.18 0.00

penetration •

p10 •

1/CV •

ln h80 •

1/h80 •

√h80 •

√p40 •

1/p90 •

Classification accuracy 79 % 66 % 70 %

Kappa-value 0.58 0.30 0.40

Logistic regression (ALS) Logistic regression (Field)

 
 

 

Computational thinning proposals are determined based on stand BA and HDOM. Figure 3 shows 

that even some stands that had immediate thinning proposed in the field are far from the thinning 

curve, mostly due to the uneven spatial distribution of trees. Logistic regression based on ALS 

statistical features provided more accurate predictions in these cases. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table  4. Predictors used in logistic regression models and k-MSN estimation of the probability that a stand 

needs immediate thinning (n = 100). Symbol “•” means that the feature is used in k-MSN estimation. 

 

Immediate thinnings k -MSN

Predictor Estimate SE z value Pr(> |z|) Estimate SE z value Pr(> |z|) 

intercept -0.57 1.01 -0.56 0.57 -3.75 1.00 -3.76 0.00

penetration -10.31 1.53 -6.73 0.00 •

h90 0.15 0.05 2.67 0.01

pine -1.99 0.44 -4.49 0.00

spruce -1.13 0.51 -2.21 0.03

BA 0.24 0.04 6.57 0.00

HDOM -0.08 0.06 -1.43 0.15

h30 •

p10 •

p60 •

√penetration •

h302 •

ln h30 •

√h30 •

√p10 •

p502 •

p602 •

Classification accuracy 83 % 83 % 86 %

Kappa-value 0.40 0.40 0.55

Logistic regression (ALS) Logistic regression (Field)

 

 
Figure 3.  Left: Black circles describe test stands (n=100) in which thinning was proposed for the 

next 10 years. Grey circles are plots with no thinning need. If a white dot is inside the circle, 

thinning was predicted with logistic regression. Right: Stands that need thinning immediately. 

Symbol logic is the same as in left. The lower limit of thinning based on BA and HDOM 

(Recommendations of Tapio…, 2006) for moist sites (Pine and Spruce) is also plotted.  

 



Figure 4 shows the plotted ALS features that describe the proportional canopy covers at 20%, 40%, 

60% and 80% relative heights (lower values mean denser canopy). Clear negative correlations (cor 

= -0.78, cor = -0.55) between the predicted probability of the thinning and the canopy density can 

be seen, especially at the relative heights of 20% and 40%.  

 

 
Figure 4. Proportional canopy covers in test stands (n=100) plotted against the predicted probability 

of  thinning (PRED) during the next 10 years. Logistic regression was used for predictions. Stand’s 

field thinning proposals were immediate (□), 1-5 years (○), 6-10 years (∆) or rest (+) stands. 

 

4. Discussion 

 

In the present study, logistic regression and k-MSN estimation were used to predict stand-thinning 

maturity. The constructed logistic regression models resulted in classification accuracies ranging 

from 79% to 83% for predicting timing of next thinning, while the accuracies with k-MSN ranged 

from 70% to 86%. ALS data collected for practical forest resource inventory could be used in the 

manner presented to enhance the quality of computationally produced thinning proposals or to 

locate stands that should be checked in the field. If this type of procedure is used in practice, 



proposals for thinnings or other forest management actions should be collected in the field at the 

same time as the ground truth data for estimation of stand characteristics.  

 

All the thinning proposals used as references were determined in the field at plot level by a single 

expert and the decisions were based on silvicultural recommendations. In practice, forest 

management actions are always carried out at the stand (compartment) level. In forest inventory, 

plot-level field measurements are generalized to a grid or segments, and stand-level characteristics 

are calculated from grid cells (segments) that are within stand boundaries. Forest management 

actions, such as thinning proposals, could be generalized in the same way. The accuracy and 

usability of this procedure need further investigation.   

 

The ALS features are highly correlated with the forest canopy structure and thus provide 

information from both the silvicultural and economic points of view, when assessing the thinning 

maturity. In this study, correlations between the predicted probability of the thinning and the canopy 

density can be seen, especially of the relative heights of 20% and 40%. This strengthens our 

hypothesis that ALS provides information that can be utilized in the prediction of forest operations.      

Therefore direct models could also be developed to predict thinning maturity. A better 

understanding of the capabilities of ALS could provide means of removing subjective field 

references or oversimplified computational thinning proposals.  

 

The results here are comparable with the study by Hyvönen (2002) and particularly when a stand’s 

operational need during the next 10 years is predicted. In the present study the classification 

accuracies were 79%, 70% and 66% with the logistic ALS model, k-MSN and logistic field model, 

respectively, while Hyvönen achieved an accuracy of 64.1%. It should be noted that Hyvönen used 

satellite images as auxiliary data, operated at the stand level, and that the reference and test sites 

were located in different areas. Our study has demonstrated the feasibility of utilizing ALS data for 

predicting stand-thinning maturity. Although ALS data are far more expensive auxiliary data than 

satellite images, they are beginning to be widely available, at least in Finland, when ALS-based 

inventory is applied. Närhi et al. (2008) also used ALS-features in classifying stand’s 

precommercial thinning maturity with an overall accuracy of 71.8%. The results of their study are 

in line with those achieved here. However, precommercial thinnings were not examined in this 

study. In general, ALS-based prediction of forest management  proposals could provide a practical 

future means of locating stands having some operational need.  

 

Forest stand operational need is always derived from decision maker’s objectives. Society’s needs 

are described in the Recommendations of Tapio for good silviculture (2006). The lower limits of 

thinning curves maintain growing stock at sustainable levels since self-thinning is avoided with 

upper limits and saw wood acquisition is ensured by regeneration diameter limits (Haara & 

Korhonen, 2004). In the present study, reference thinning proposals were determined in a practical 

way, based on the Recommendations of Tapio for good silviculture (2006). In this procedure, the 

forest owner is assumed to maximize the NPV of the forest. The decision maker’s alternative 

objectives can be taken into account when field proposals are determined.  

 

Although tree species and site classes were tested as preliminary variables for ALS-feature-based 

logistic regression models, they were not included in the final models. This may have resulted from 

the dataset used. The majority of the thinning or advanced thinning stands used in this study were 

spruce- or pine-dominant and located in the same site type (moist site); e.g. thinning curves are 

similar for pine and spruce stands in moist sites.  

 



The ALS-based predictions outperformed models that only included variables from the field 

measurements in locating thinning stands, although BA and HDOM are measured without 

significant errors in these kinds of data. When the immediate thinning maturity was modelled, both 

methods provided accurate results. In logistic regression, the result is a predicted probability of an 

event to occur. In the present study this probability was simplified into two classes. If the 

probability was over 0.5 the event (thinning) occurred, and vice versa. We noted that stands in 

which the probability was close to 0 or 1 were classified more accurately than the overall 

classification accuracy. The predicted probability of the thinning to occur could be used in locating 

thinning stands with the required confidence level.  

 

A new practical procedure for predicting stand-thinning maturity was presented in this study with 

promising results. Further research is needed to test the method at stand level and also to develop 

models that could utilize single-tree-level information. Our results can be used in linking ALS-

based forest inventory with practical forest management planning. 
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