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A B S T R A C T S

Leaf area dynamics offer information about changes in forest biomass and canopy function critical to under-
standing the role of forests in the climate system and carbon cycle. Airborne small footprint lidar is a potential
major source for the detection of variation in leaf area density (LAD), LAD vertical profiles, and total leaf area
(leaf area index, LAI), from sites to regional scales. However, the sensitivities of lidar-based LAD and LAI esti-
mation are not yet well known, particularly in dense forests, over landscape heterogeneity, sensor system, and
survey differences, and through time. To address these questions, we compared 16 pairs of multitemporal air-
borne lidar surveys with four different laser sensors across six Amazon forest sites with resurvey intervals
ranging from one to nine years. We tested whether the different laser sensors, and the pulse return density of
laser sampling (variable between and within each survey) introduce systematic biases. Laser sensors created
consistent biases that accounted for up to 18.20% of LAD differences between surveys, but biases could be
corrected with a simple regression approach. Lidar pulse return density had little appreciable bias impact when
above 20 returns per m2. After correction, repeated mean and site maximum LAI estimates became significantly
correlated (R2 ~0.8), while LAD profiles revealed site differences. Heterogeneity and change in LAD structure
were detectable at the ecologically relevant 1/4 ha forest neighborhood grid scale, as evidenced by the high
correlation of profile variation between surveys, with the strength of correlation (R2 value) significantly de-
creasing with increasing survey interval (0.74 to 0.16 from one to nine years), consistent with accumulating
effects of forest dynamics. Sensor-induced biases trended towards correlation with lidar footprint (beam width).
The LAD estimation and bias correction approach developed in this study provides the standardization critical
for heterogeneous lidar networks that offer high throughput functional ecological monitoring of climatically
important forests like the Amazon.

1. Introduction

Forest canopies play critical roles in global carbon and water cycles
and determine fluxes of heat and energy to the atmosphere that drive
atmospheric circulation and influence the climate (Bonan, 2008).
However, forests are changing on a global scale due to deforestation,
land use change, changing climate, and invasive pests and pathogens,
which are substantially altering forest ecosystem services including
biomass production, carbon storage, and regional and global climate
regulation (Foley et al., 2007; Hansen et al., 2013; Allen et al., 2015;
Stark et al., 2016). A key challenge is to develop rapid and large-scale
remote monitoring approaches to identify and quantify forests that are
sensitive to these different types of change (McDowell et al., 2015;

Chambers et al., 2007). The Amazon basin, as the largest tropical forest
region, plays a correspondingly important role in regulating Earth's
climate system and carbon cycle (Malhi et al., 2008). Increasing
drought frequency and intensity may be impacting Amazon forest
structure and function (Phillips et al., 2009; Davidson et al., 2012);
however, the nature and extent of these impacts remain controversial
(e.g., Saleska et al., 2007; Hilker et al., 2014), highlighting the need for
accurate monitoring of forest change sensitive to ecological processes
and functions (Chambers et al., 2007).

The structure of canopy leaf area can serve as a basis to monitor
forest ecological change (Knapp et al., 2018; Asner et al., 2007; Parker
et al., 2004b). The quantity and spatial structure of canopy leaf area
influences radiation interception and reflectance, and in turn,
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production, evapotranspiration, and heat fluxes (Bonan, 2015). Leaf
area index (LAI, m2m−2), defined as the one-sided leaf area per unit
ground surface area, is a common measure for leaf quantity and an
essential parameter for ecological models, which propagate area-spe-
cific measures of leaf function over total leaf area (LAI), and environ-
mental variables, to predict canopy function (Fisher et al., 2007; Garcia
et al., 2016; Guo et al., 2015). The vertical and horizontal volumetric
distribution of leaf area, leaf area density (LAD, m2m−3), provides
critical information to understand canopy light environments and
functions (Parker et al., 2004a; Antonarakis et al., 2014). Canopy
profiles of LAD can also reveal the dynamics of woody biomass (Stark
et al., 2012), and demographic states and fluxes (Stark et al., 2015)
when forest ‘neighborhood’ scale (i.e., ~1 ha plot scale) heterogeneity
is measured. Therefore, the accurate quantification of LAI and LAD is
essential to improve monitoring of changing canopy structure and its
consequences for ecosystem-atmosphere functions.

LAI and LAD are challenging to measure in forests, particularly at
ecologically relevant neighborhood scales, whether employing direct or
remote approaches (Olivas et al., 2013). For data sources ranging from
field-collected hemispherical photographs to satellite-based spectro-
radiometers (e.g., MODIS), leaf area is typically estimated by variables
that integrate information from the full vertical canopy column—ca-
nopy absorption, reflectance, transmittance, or cover—limiting esti-
mation to total leaf area, i.e., LAI, and introducing error associated with
high LAI value (> 5m2m−2) sensor saturation (Weiss et al., 2004;
Zheng and Moskal, 2009; Olivas et al., 2013; Tang et al., 2016). Mea-
suring the spatial structure of LAD, including fully vertically resolved
leaf area profiles, has represented the greatest challenge and is possible
only through painstaking direct harvesting (Clark et al., 2008), or from
canopy penetrating range measurements, which have become more
widely available with the advent of laser ranging and lidar (Lefsky
et al., 2002; Parker et al., 2004a).

Lidar offers detailed 3-D canopy structural information including
LAD vertical profiles and LAI estimates (Hosoi et al., 2010; Stark et al.,
2012). LAI and LAD are estimated from laser pulse penetration or in-
terception rates; in this case, the laser ranging light in any volumetric
units of canopy space is reflected towards and received by the sensor
according to interactions with leaves and other surface area (Parker
et al., 2004a; Stark et al., 2012; Detto et al., 2015). Thus, knowledge of
the incidence of laser light or laser pulse number and the proportion of
light or pulses reflected back provides raw information about surface
area density—the largest fraction of which is attributed to leaf area
(Lefsky et al., 2002)—within each volumetric unit.

Lidar based approaches have demonstrated great potentials for
multi-scale LAI and LAD estimation (Tang et al., 2012; Vincent et al.,
2017). In addition, the increasing prevalence of multitemporal (re-
peated) lidar surveys offers unprecedented opportunities to observe leaf
area and forest structural changes over landscapes. However, the ac-
curacy, consistency, and sensitivities of leaf area estimation to lidar
survey parameters, such as pulse return densities, remain little explored
(Morsdorf et al., 2008; Liu et al., 2018). Due to the diversity of lidar
sensors, varied campaign designs, and broad geographical scopes, da-
tabases including repeated surveying through time are expected to
often include significant variation in terms of lidar sampling. Lidar
surveys with different sensor systems, pulse return densities, penetra-
tion rates, and laser footprints (and divergences) could introduce biases
in leaf area estimation (Véga et al., 2016), but these biases remain
poorly understood. To improve understanding of forest structural
change, including at finer forest neighborhood scales, validation and
standardization of LAI and LAD derived from multitemporal, multi-site,
multi-sensor lidar datasets is required.

Here we investigated the capacity of multitemporal airborne lidar,
spanning sensor systems, and survey specifications, to consistently and
accurately estimate leaf area and its dynamics. We compared estimates
from 16 repeated surveys with four commonly used airborne laser
sensors in six Brazilian Amazon forest sites, spanning nine survey years.

We asked:

• Overarching question: Can variation in canopy LAI and LAD structure
(particularly vertical profiles) be estimated from a varied multi-
temporal Amazon forest lidar database with sufficient accuracy to
monitor forest change through time and over geographical gra-
dients?

• Bias correction: Are there systematic biases in LAI and LAD estima-
tion that can be corrected? And are biases associated with sensor
systems or with survey parameters, specifically laser pulse sampling
intensity (pulse return density)?

• Monitoring at the neighborhood scale: Can multitemporal lidar reveal
structural changes in terms of LAD profiles at fine forest neighbor-
hood scales (1/4 ha)? And how does change in neighborhood
structure respond to the interval between lidar surveys?

2. Study area and data

2.1. Study area

Our study area included six forest sites in the Brazilian Amazon
spanning four states (Fig. 1). All sites are tropical moist forests and
include: CAU (Fazenda Cauaxí), FST (Saracá-Taquera National Forest),
the TNF (Tapajós National Forest) in Pará, DUC (Adolpho Ducke Forest
Reserve) in Amazonas, JAM (Jamari National Forest) located in Ron-
dônia, and the drier FN (Feliz Natal) in Mato Grosso. These sites en-
compass a variety of forest types, climates, and disturbance histories
(Table S1; see Longo et al., 2016 for a detailed description of the dis-
turbance history of each forest site).

2.2. Lidar data

Airborne lidar surveys were conducted as part of the Sustainable
Landscapes Brazil project implemented by USFS (the U.S. Forest
Service) and EMBRAPA (Brazilian Corporation of Agricultural
Research) and supported by USAID (the U.S. Agency for International
Development) and the U.S. Department of State (Longo et al., 2016).

Fig. 1. Locations of the study areas on a map of Brazil, which include 6 forest
sites within Brazilian Amazon. The numbers in brackets following the site
names are subsite indices.
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The data were collected between 2008 and 2017 with four laser sensors
(Table 1): ALS50-II (Leica Geosystems) in 2008, ALTM 3100 (Optech
Inc.) in 2012, 2016 and 2017, ALTM Orion (Optech Inc.) in 2013 and
2015, and Harrier 68i (Trimble Navigation) in 2014.

Among these four sensors, ALS50-II has the strongest beam energy
and smallest beam divergence (mrad of 0.15) flying at an altitude of
about 800m, a scan angle of 10°, and flightline overlap of 27%, to
achieve 51.7 to 55.5 pts m−2. ALTM 3100 and ALTM Orion had slightly
different beam divergence values (mrad of 0.30 and 0.25, respectively),
but similar collection parameters, with flying altitudes of 700–853m,
maximum scan angles ranging from 10° to 15°, and about 65% flightline
overlap. Broadly, average pulse return densities ranged from 22.7 to
66.4 pts m−2. The Harrier 68i had the weakest beam energy (mrad of
0.5). As a result, these surveys were flown at the lowest altitude (500m)
with the largest scan angle (30°) and high flightline overlap (65%), to
obtain high return density data (42.8–56.1 pts m−2).

Some of the six forest sites had multiple subsites (Fig. 1) and some
had more than two surveys conducted with different laser systems
(Table 1), resulting in a total of 16 pairs of multitemporal measure-
ments. Each pair consists of two lidar surveys made at the same site,
with the same geographical coverage, in different years, and with dif-
ferent sensors. Our dataset contains all pairwise combinations of ALTM
3100, ALTM Orion and Harrier 68i. However, the ALS50-II was only
used in 2008 and followed by ALTM 3100 in 2012 and 2017 at the DUC
and the TNF (subsite 1, TNF01); thus, there were no pairs comprising
ALS50-II and ALTM Orion or Harrier 68i data (all pair groups are shown
in Table S2).

The Sustainable Landscapes survey planners held survey parameters
associated with each lidar sensor constant to enhance comparability. As
such aircraft relative altitude and other parameters varied over lidar
sensors, but varied little among the specific site surveys conducted by
each sensor. Thus, sensor induced biases, as we consider them, could be
influenced by survey parameters and sensor characteristics (Section
3.7).

3. Methodology

Two primary methodological steps were needed to achieve our
objectives: 1.) Quantify and correct leaf area estimation biases caused
by lidar sensor and pulse return density variation; and 2.) Evaluate the
detection of structural changes with corrected leaf area estimates using
multitemporal lidar surveys. To quantify and correct leaf area estima-
tion biases, we first estimated LAD at a fine scale (2×2×1m voxels)
(see Fig. 2 method summary). Then, we aggregated LAD estimates to
the forest neighborhood scale, while maintaining vertical resolution (1/
4 ha grid cells, or 50×50×1m voxels), and calculated the total LAI
value of each 1/4 ha grid cell. With these multitemporal leaf area es-
timates (LAIs and LAD profiles) at the forest neighborhood scale, we
investigated the potential of sensor-induced and pulse return density-
related biases, and produced a bias correction routine with a conceptual
model explained in Section 3.3. To assess structural changes with

corrected leaf area estimates, we explored possible connections be-
tween surface height changes and leaf area changes, and we applied
regression analysis to multitemporal leaf area variation (deviations
from regular vertical patterns). Thus, we tested the detectability and
consistency of LAD variation in neighborhoods through time. We also
asked if survey (sensor) parameters correlated with biases.

3.1. Lidar data processing

First, outliers of lidar point clouds were identified and removed by
restricting lidar pulse returns within three standard deviations of mean
elevations (Fig. 2). Then, lidar pulse return counts were tallied in voxels
(voxelization) with a 2× 2m horizontal and 1m vertical grid scale
(i.e., 3-D analog to pulse tally rasterization). Digital terrain models
(DTMs) were determined for each survey using minimum quantile
spline regression and interpolation (See ‘Ground surface estimation’ in
Supplementary material). Based on the DTMs, 3-D voxel data were
‘leveled’ to aboveground height so that the lowest voxel represented the
ground for all datasets—similar conceptually to the ‘leveling’ step that
produces canopy height models (CHMs) by subtracting DTMs from di-
gital surface models (DSMs). LAD estimates at the fine scale
(2×2×1m) were then used to estimate average vegetation density
profiles and LAD values at the 1/4 ha forest neighborhood scale
(50×50×1m). Areas not penetrated by lidar pulses did not con-
tribute to horizontal averages. The vertical dimension was set at 1m to
enhance representation of vertical variation, relevant for analysis of
forest dynamics (Stark et al., 2012, 2015). The 50×50m horizontal
grid cell is also the scale of field inventory plots in the study region. All
analyses were conducted in R (R Development Core Team, v3.3.2,
2013).

3.2. Leaf area density (LAD) estimation

Our approach to estimate LAD follows foundational work applying
lidar in ecosystem studies (Harding et al., 1994; Lefsky et al., 2002;
Parker et al., 2004a), and earlier active canopy probe leaf area esti-
mation methods (MacArthur and Horn, 1969; Aber, 1979). Within each
2×2×1m voxel, LAD was estimated from vertical transmission rates
of lidar pulses. Leaf area per unit volume (LADi) estimates were cal-
culated as:

⎜ ⎟= ⎛
⎝

⎞
⎠

LAD ln P
P k z

1
Δi

in

out

where Pin is the number of laser pulses entering voxel i (omitting hor-
izontal indexing for clarity) from the direction of the lidar device, Pout is
the number of pulses exiting the voxel on the other side, Δz is the
vertical dimension (1m in this study), and k is an adjustment factor
relating leaf area to the pulse interception, reflection, and detection
probability. This equation can also be interpreted as the natural log of
the inverse of pulse transmission rate scaled to best estimate leaf area in

Table 1
Sensors and surveys.
* The numbers that follow site names are subsite indices.

Sensor ALS50-II ALTM 3100 ALTM Orion Harrier 68i

Survey year 2008 2011, 2012, 2015, 2016, 2017 2013, 2014, 2015 2014
Sites surveyed* DUC, TNF01 CAU, DUC, FN, JAM02, JAM06, TNF01,

TNF02, TNF03
CAU, FN, FST01, FST06, JAM02, JAM03,

TNF02, TNF03
FST01, FST06, JAM02, JAM03,

JAM06
Beam divergence (mrad) 0.15 0.30 0.25 0.50
Average flying altitude (m) 816 850 850 500
Average footprint (m) 0.122 0.255 0.213 0.250
Maximum scan angle 10° 11° 11° 30°
Point density (pts m−2) 51.7–55.5 22.7–66.4 30.0–61.4 42.8–56.1
Average first return ratio (%) 77.8 56.0 54.1 61.9
Flightline overlap (%) 27 65 65 65
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the Amazonian forest.
The leaf area scaling constant k, was set through reference to an

independently estimated LAI value. We compared published estimates
of the LAI of the TNF (average of 5.72m2m−2) based on non-lidar
methods (Stark et al., 2012; from references summarized therein) with
our estimates of LAI derived from the first (2008) Leica AL50-II lidar
survey, and found k to be 0.803. To improve accuracy, we excluded
LAD estimates below 5m, which were more uncertain because of lim-
ited pulse penetration low in the canopy (Stark et al., 2012); based on
prior work and preliminary results we assumed that this would reduce
total reference LAI by 0.25m2m−2.

3.3. Conceptual model for leaf area bias correction

We investigated multiple potential sources of bias influencing our
ability to estimate leaf area—both LAD and LAI—with lidar sensors. We
considered the potential for biases to be caused by, (i) the properties of
the lidar sensor (and associated survey parameters) influencing the
sensitivity of LAD estimation (termed as sensor-induced bias in the

following sections). We then consider (ii) whether bias is associated
with the density of lidar pulses (measured here as the pulse return
density), which unlike other lidar parameters can be highly spatially
variable within surveys. We built a mathematical-conceptual model to
disentangle these sources of bias, and then applied it to comparisons of
leaf area estimates of lidar survey pairs at 1/4 ha neighborhood scales.

Start by assuming that given unbiased LAD estimation in repeat
surveys, estimates in a second survey (LADy2) would equal those of the
first survey (LADy1), plus any changes in the LAD at the same vertical
position in the canopy (C1):

= +Model 1: LAD LAD C1y2 y1

If the different lidar sensors have different sensitivities, this would
introduce a bias (e1) in Model 1 for each device pair. Furthermore, if
pulse return density (PRD) variation causes bias, then both devices'
PRDs will influence combined bias for this factor, which we model as
the additive term e2:

= + ∗ + +Model 2: LAD (1 e1) LAD C1 e2 (PRD , PRD )y2 y1 y1 y2

Fig. 2. Flow diagram for the identification and correction of sensor-induced bias of LAD estimation.
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LAD comparisons from survey pairs in intact undisturbed forest
should not display consistent LAD changes (C1=0), and thus should be
linearly related and pass through the origin. Model 3 summarizes,
where sensor-induced bias factor, a= 1+ e1, and pulse return density
related bias, Ɛ ~e2(PRDy1, PRDy2):

= ∗ +Model 3: LAD a LAD Ɛy2 y1

Applying linear regression analysis to this model within unchanging
intact forest regions (see Supplementary material ‘Grid Cell Filtering
Approach’). The stability of the regression slope would reflect the
consistency of sensor-sensitivity induced biases, while model residuals
would be related to pulse return densities in both surveys.

3.4. Assessing pulse return density related and sensor-induced biases

We evaluated pulse return density as a source of LAD profile bias in
survey pairs (Fig. 2). The range of pulse return densities in our dataset
—22 to 66 pts m−2—is considered high and adequate for accurate lidar
metric estimation, particularly for canopy surface attributes
(Jakubowski et al., 2013; Silva et al., 2017; Wulder et al., 2012; Zhao
et al., 2018). Instead of comparing pulse return density variation be-
tween survey pairs, our study mainly focused on the variation in pulse
return density within each survey among grid cells, which ranged from
3 to over 100 pts m−2 (Supplementary material, ‘Direct pulse return
density-related bias assessment’). Analyses were conducted on forest
neighborhoods filtered for mature forests (mean canopy height> 20m)
that had not undergone disturbance impacting the canopy surface
height (i.e., had< 2m of canopy surface height change; Supplementary
material, ‘Grid cell filtering approach’).

We tested for pulse return density-related bias by exploring varia-
tion of regression parameters over variation in pulse return density
requirements (see Supplementary material for a second approach,
‘Direct pulse return density-related bias assessment.’). We applied a
sliding filter of minimum acceptable pulse density sampling ‘threshold
values’—a higher pulse return density threshold value may indicate
higher data quality for leaf area estimation but it is more restrictive,
reducing the number of neighborhoods available for analysis. As we
varied the pulse return density threshold, we tracked sensor induced
biases (slopes), residuals, and R2 values of fits of Model 3. We hy-
pothesized that if pulse return density creates bias we would observe
strong shifts in residuals. Furthermore, if sensor induced bias is im-
pacted by pulse return density, regression slopes should shift as well.
The absence of a shift, however, would support Model 3's partitioning
of sensor induced and pulse return density related bias.

To estimate sensor-induced bias we also have to identify an optimal
pulse return density threshold; this would be the smallest value that
corresponds with a stable regression slope (sensor-induced bias), stable
R2, and sums of squares residuals, while still sampling a sizable pro-
portion of total site grid cells, which we define as> 25%. We applied
linear regression without intercept values, comparing survey pair LAD
profiles according to Model 3, repeating with different threshold values,
and recorded statistics (Fig. 2). The same threshold was applied such
that acceptable neighborhood cells met the pulse return density
threshold requirement in both surveys. Since repeat LAD profiles were
independent lidar-derived estimates, we applied reduced major axis
regression (RMA) using the R package, “smatr” (Warton et al., 2012).
The regression analysis was applied to every neighborhood grid cell
individually and sensor-induced biases were interpreted as the devia-
tions of the regression slope from one.

Prior work (Stark et al., 2012) determined a value of the MacArthur-
Horn model LAD adjustment factor, k, for the Leica ALS50-II surveys
(2008 DUC and TNF sites) that agreed with empirical leaf area mea-
surements (see Section 3.2); thus, we set the bias correction factor of
the Leica AL50-II to one. The bias correction factors applied to the other
three sensors were then the mean values over neighborhood grid cells
of RMA regression slopes against the LAD estimates of the Leica ALS50-

II. As Optech ALTM Orion and Trimble Harrier 68i had no direct
comparison with Leica ALS50-II, we carried through their comparisons
with Optech ALTM 3100, and the comparison between Optech ALTM
3100 and Leica AL50-II, to indirectly calculate bias correction factors,
to ultimately adjust all sensors to best estimate LAI.

3.5. Validation of sensor-induced bias correction

We validated sensor-induced bias correction by evaluating the
consistency of bias correction factors. First, after calculating sensor-
induced bias corrections (according to Model 3) for the 16 survey pairs,
we tested for sensor pair effects with ANOVA and an associated Tukey's
test to compare group differences. Sensor pairs were: ALTM Orion vs
ALTM 3100 (5 survey pairs), ALTM 3100 vs Harrier 68i (3 pairs), ALTM
Orion vs Harrier 68i (5 pairs), ALS50-II vs ALTM 3100 (3 pairs).
Significant ANOVA results would suggest sensor-induced biases are
consistent, while nonsignificant results would suggest that sensitivities
are more likely attributable to survey or site specific variables, or
random effects.

We also compared mean LAD profiles and LAI values of survey pairs
before and after bias correction. In case mean neighborhood LAI values
were more sensitive to potential site forest change, we also considered
site maximum LAI values. Bias correction should move LAI mean and
maximum values closer to one-to-one relationships.

3.6. Evaluation of biophysical change detection with corrected LAD profiles

After sensor-induced bias correction, we evaluated the potential for
LAD profiles to reveal biophysical changes. We hypothesized that ca-
nopy gap formation would impact canopy surface height and LAD
profiles, which we tested by comparing changes in canopy height with
changes in leaf area density within height strata. In the ‘Results’ section,
we summarized our findings from this approach, but it is detailed in
Supplementary material in the ‘Surface height and leaf area change’
section. We also assessed whether LAD profile variation was consistent
from one survey to the next at the 1/4 ha neighborhood grid scale. In
the absence of canopy change, profile differences would represent
measurement error; however, forest structural change also impacted
differences since the interval between survey pairs was significant,
ranging from 1 to 9 years. We hypothesized that if forest structural
change is small annually, LAD profile variation should be highly con-
sistent and increase with increasing between-survey intervals, or dis-
turbance factors.

To test this hypothesis, we quantified LAD profile variation, and
compared this over all survey pairs, with two complementary ap-
proaches. First, we regressed deviations from vertical profiles of survey
pairs within each neighborhood cell, evaluating local regression per-
formance en masse. Second, we constructed an overall regression for
each survey pair comparing all deviations (e.g., all neighborhoods and
all vertical positions) for a summary evaluation. Profile variation was
calculated as deviations from consistent vertical trends (note that we
calculated vertical trends specific to maximum canopy height to avoid
potential artifacts). We fit RMA regressions to calculate statistics and
regression slopes within each grid cell—high R2 values and slopes close
to 1 (and intercepts near zero) would indicate high detectability of
neighborhood scale structural variation.

3.7. Survey parameters and sensor-induced biases

We asked if survey and sensor parameters (which varied con-
sistently over devices in this dataset) were related to estimated biases.
We related bias correction factors individually to lidar pulse beam di-
vergence, footprint, altitude, scan angle and first return rates with
Pearson correlation coefficients. We also applied this approach to assess
potential correlations among sensor parameters. With a sample size of
just four device pairs, however, inference was limited.
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4. Results

4.1. Sensor-induced bias of LAD estimation

We found significant evidence of sensor-induced bias that was in-
dependent of pulse return density variation. Regressing LAD profiles
between survey pairs in 1/4 ha neighborhood grid cells resulted in
mean slope values that significantly differed from 1 in 15 out of 16
survey pairs (Table S2)—indicating sensor-induced biases, according to
Model 3. More conservatively, testing sensor pairs using their survey
pairs as replicates (i.e., any survey pair conducted with the same two
sensors; N= 3 to 5; Table S2), two out of four cases appeared to sig-
nificantly differ from 1, indicating sensor-induced bias, or, equiva-
lently, different sensor ‘sensitivities’ to leaf area density (pair group t-
test results in Table S2; ANOVA result: Df= 3; Sum Sq=0.046; Mean
Sq=0.015; F value= 5.701; Pr= 0.012). Specifically, the Leica ALS-
50 vs Optech ALTM 3100 pair differed from the ALTM Orion vs Harrier
68i pair (Pr < 0.05), and the ALS50-II vs ALTM 3100 pair trended
towards difference with the ALTM 3100 vs Harrier 68i pair (Pr < 0.1).

After comparing sensors directly—and indirectly for ALTM Orion
and Harrier 68i—to our standard, the ALS50-II (correction factor of 1),
bias correction factors of the ALTM Orion, Harrier 68i, and ALTM 3100
were 1.077, 1.106 and 1.182, respectively (Fig. 3). Prior to correction,
the ALTM 3100 estimated the smallest LAD values: on average, LAD
estimates of the ALTM 3100 were 6.95%, 9.84% and 18.2% less than
those of the Harrier 68i, ALTM Orion and ALS50-II, respectively (Figs. 3
and 4). Since ALTM Orion and Harrier 68i sensors had no direct com-
parison with the ALS50-II, bias correction factors were estimated in-
directly via mutual comparison with the ALTM 3100. However, the
ALTM Orion and Harrier 68i were compared directly to each other, and

this allowed for a simple validation calculation: the Harrier 68i to
ALTM Orion direct comparison estimated a bias of 2.52% (1.0252 bias
factor). Constructing the same comparison indirectly, the bias is 2.70%
(in terms of bias factors: 1.0984/1.0695=1.0270). Thus, direct and
indirect paths are in close agreement (0.18% difference), suggesting
internal consistency for the indirect calibration of these sensors.

Regressions of second on first LAD estimates from survey pairs after
correction were highly significant and predicted high proportions of
variation (R2: 0.73 to 0.96). Among the four pairwise combinations, the
regression between ALTM 3100 and ALS50-II had the lowest R2 (mean
of 0.778) and largest residuals (mean of 0.017m2m−3; Table S2), but
also the longest average survey interval (> 5 years). The other three
combinations had similar and higher R2 values, ranging from 0.885 to
0.920.

4.2. Pulse return density related bias

We found little evidence of pulse return density related biases. Fig. 4
reports the results of varying the minimum acceptable pulse return
density sampling (i.e., pulse return density threshold) from 5 pts m−2 to
45 pts m−2 by 1 pts m−2 increments and recalculating the slope, R2

values, residuals, and sample percentages (of acceptable grid cells) for
each sensor pair. Pulse return density had little impact on these factors,
particularly above 20 pts m−2 and when> 25% of grid cells were
considered in analysis. For example, with increasing pulse return den-
sity, R2 increased and residual values decreased initially, and then be-
came stable at 20 pts m−2, prior to major reductions in available grid
cell percentages as the threshold reached high values. Thus, we selected
20 pts m−2 as our analysis threshold. Pulse return density thresholds
that exceeded median grid cell values led to strong decreases in avail-
able grid cell percentages, causing drops below 25% between 25 and
40 pts m−2 for 3 out of the 4 sensor pairs. Regression slopes became
unstable when the sampling percentage dropped below 20%. Reported
in Supplementary material (‘Direct pulse return density-related bias
assessment’), we found that just 3.7% of differences (residuals) in
survey pair profiles at the 1/4 ha grid cell level were explained by
variation in pulse return density. Consistent with Model 3, pulse return
density had effects on the uncertainties of regression analysis but not on
LAD relationship slopes (sensor-induced biases).

4.3. LAD profiles and total LAI before and after correction

Fig. 5 presents mean vertical LAD profiles and standard errors for
the TNF01 survey pair, before and after correction. Before correction,
repeated LAD profile pairs had pronounced differences. After correc-
tion, differences were substantially reduced (compare Fig. 5 panels a
and b). Fig. 6 shows corrected LAD profile comparisons for all 16 survey
pairs, and pre-correction profiles are shown in Fig. S1. The majority of
corrected LAD profile pair means and confidence regions overlapped
each other without clear separation. LAD profile pairs with a short,
single-year, interval between surveys had closer agreement than pairs
with longer, multiple-year, survey intervals (see also interval effects in
Section 4.4).

The comparison of survey pair LAI values was dramatically im-
proved by sensor bias correction. Applying reduced major axis regres-
sion to LAI values of pairs before correction resulted in a low and
nonsignificant R2 of −0.181, with a root-mean-square error (RMSE) of
0.541m2m−2 (Fig. 7). After correction, the LAI comparison was highly
significant, the R2 increased to 0.824, and the RMSE decreased to
0.238m2m−2. The regression slope after correction was 0.995, close to
a one-to-one relationship.

4.4. Detecting canopy change with LAD profiles

Reported in Fig. S2, we found varied relationships between LAD
profile and canopy surface height changes at different vertical positions

1.182

ALTM
3100

Harrier 
68i

ALTM 
Orion

ALS50-II

1.0984 1.0695

1.0252

1.0270

Fig. 3. Pairwise correction factors among all sensors. ALS50-II (center) is the
reference (the correction factor of ALS50-II is 1), thus, the three arrows in the
center pointing to ALS50-II are the correction factors used to make LAD com-
parable in this study. Blue arrows indicate direct estimates from sensor pairs
available in our dataset; gray arrows show indirect estimates via multiple
sensor comparisons, see details in Section 4.1. Comparing ALTM Orion and
Harrier 68i, the direct and indirect estimated correction factors are 1.0252 and
1.0270, respectively, a difference of 0.18%. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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in the canopy. Positive correlations were high in the upper portions of
the canopy in a disturbed site (R2 up to 0.805) but generally decreased
to non-significant values near zero with increasing depth in the vege-
tation profile, and with decreasing disturbance impact over sites. See
‘Surface height and leaf area change’ in Supplementary material.

To assess the detectability of forest structure variation and change at
1/4 ha neighborhood scales, we compared survey pair LAD profile de-
viations from vertical trends. We regressed deviations from vertical
profiles within each neighborhood grid cell, and, for a summary eva-
luation, all deviations (all neighborhoods and all vertical positions).

Fig. 4. The effects of pulse return density requirements on the calculation of sensor-induced biases. The colors show different sensor combinations: blue shows
regression results matching ALTM 3100 to ALTM Orion; green ALTM 3100 to Harrier 68i; red Harrier 68i to ALTM Orion; purple ALTM 3100 to ALS50-II. Each
statistic is presented with the mean value of each sensor combination group (dotted line) and the 95% confidence interval (colored region). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Estimated leaf area density profiles of the
TNF01 site (survey year 2008 vs 2012) before and
after correction. Data has been filtered to areas
with> 20 pulse returns m−2 and with canopy height
changes not exceeding±2m. Red colored con-
fidence regions show the first survey and blue show
the second. Gray regions are profile differences (da-
shed black line, before correction; solid black line,
after correction). Figs. 6 and S1 show these same
before and after correction profiles comparisons for
all survey pairs. The reference profile is the 2008
TNF01 site survey. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)
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Regressions of all deviations were significant for all 16 survey pairs,
with R2 values ranging from 0.16 to 0.74, with a mean of 0.53. R2

values were correlated with survey interval, decreasing as interval in-
creased (Fig. 8; standard error= 0.140, R2=0.516; 14 DF; p-
value < 0.01). Standard deviations were also highly correlated with
survey interval (Fig. 8; standard error= 0.00526; R2=0.842; 14 DF; p-
value < 0.001). LAD deviation correlations within 1/4 ha neighbor-
hood cells were overwhelmingly significant: the percentages of grid
cells with significant correlations at p-value≤ 0.001 ranged from 53.8
to 99.6%, with a mean of 87.5% of grid cells. Percentages of significant
grid cells were correlated with survey interval too, decreasing with
increasing interval (standard error= 10.9; R2= 0.445; 14 DF; p-
value < 0.01). The RMA regression slopes of relationships within grid
cells, however, did not significantly vary with survey interval length, or
mean R2 values. RMA slopes ranged from 0.766 to 1.226 with a mean of
1.002 and a standard deviation of 0.113 (Fig. 9 lower right panel pre-
sents slopes for TNF01 neighborhoods spatially).

We present an example of the analysis of 1/4 neighborhood scale
variable change at TNF for the 2008–2012 survey interval, based on the
leaf area estimation and bias correction approach developed in this
study (Fig. 9).

4.5. Potential impacts of survey parameters on sensor-induced biases

Among key sensor parameters, only footprint displayed a potential
relationship with bias correction factors—trending positive in this case
(R2= 0.91; 2 DF; p-value=0.089). Thus, lidar sensors with larger
footprints produced smaller LAD estimates, all else being equal. Fig. S3
reports all correlation coefficients between sensor-survey parameters
and bias corrections. Scan angle went down as altitude increased
(R2= 0.98; 2 DF; p-value=0.018) and trended towards an increase
with beam divergence (R2= 0.92; 2 DF; p-value= 0.076).

Fig. 6. Estimated leaf area density profiles of all sites after correction. Data are filter as in Fig. 5. Red confidence regions are first surveys and blue second surveys.
Gray regions are profile differences (dashed black lines, before correction; solid black lines, after correction). Fig. S1 presents the same comparisons before correction.
The reference profile is the 2008 survey in site TNF01. The subtitle of each subplot has four components separated by an underscore: the first indicates the laser
sensor combination, where “L” is ALS50-II, “A” is ALTM 3100, “O” is ALTM Orion, and “H” is Harrier 68i; the second component is the site name (the number is the
subsite index); the third component comprises the years of each survey in the pair separated by “v” (“a” and “b” indicate different survey regions within the same site
in the same year); the fourth component is the resurvey interval in years (red bordered plots: multiple-year interval; black bordered plots: single-year interval). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Discussion

Our study provides strong evidence that a forest lidar database
comprising multi-sensor and multitemporal surveys can monitor forest
canopy structure through time and over geographical gradients with
the accuracy needed to assess ecological changes. Systematic biases in
leaf area index (LAI) and leaf area density (LAD) estimation were pre-
sent and associated with lidar sensors. These biases could be assessed
and corrected with a regression based approach, particularly when lidar
sampling offered>20 pulse returns m−2. Our study also found strong
support for the robust estimation of leaf area structure at forest
neighborhood scales (1/4 ha grid cells); profile variation at this scale
was consistent through time, with profile similarity decaying as interval
length increased from one to nine years, consistent with expected im-
pacts of forest dynamics and turnover. Lidar databases, while being well

served by maximal standardization between surveys, can nonetheless
succeed in the critical mission of monitoring changes in canopy struc-
ture in climatically important forests such as the Amazon under a range
of sampling scenarios.

Our approach to quantifying leaf area variation, as well as assessing
and reducing error in it, is unique and offers a foundation for future
efforts. Validation and bias correction of lidar-based leaf area estima-
tion with multiple sensors and varied collection parameters, over
multiple sites, had not previously been undertaken. Instead, validation
of multitemporal lidar surveys has primarily focused on upper canopy
surfaces, specifically canopy height models (CHMs) (Zhao et al., 2018)
used to monitor carbon dynamics (Cao et al., 2016; Shao et al., 2018a;
Silva et al., 2017). And approaches to correct systematic bias between
sensors have focused on a single forest site rather than an array of sites
(Magnussen et al., 2010; Réjou-Méchain et al., 2015; Roussel et al.,

Fig. 7. Comparison of LAI estimations of all repeat
survey pairs before (red) and after (blue) sensor-in-
duced bias correction. Top panels show maximum
LAI values, which are the 97% quantiles of all LAI 1/
4 ha cell values within each survey (data filtered as
in Figs. 5 and 6); the bottom panels show the same
comparisons for mean LAI values. (For interpretation
of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Results of comparing height controlled grid cell
LAD profile deviations between lidar survey pairs,
showing R2 values (left y axis) and standard deviations
(right y axis), plotted against survey intervals (x axis).
Shorter survey intervals have higher R2 values and lower
standard deviations, consistent with lower structural
change.
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2017).

5.1. Assessing leaf area structure through time and over space with multi-
sensor airborne lidar

Comparing systematic variation of LAD estimates among four dif-
ferent airborne lidar systems, 16 repeated survey pairs, and over pulse
return density gradients, our results demonstrated sensor-induced
biases of lidar-derived LAD estimation. Sensor-induced biases impacted
LAD values by up to 18.2%, and therefore would have a considerable
effect on biophysical change analysis, and other ecological applications
using multi-temporal lidar surveys. Fortunately, we found that sensor-

induced biases could be estimated with linear regression analysis, and
neutralized with bias correction factors (multipliers).

While it has long been appreciated that low sampling intensity—in
this case, lidar pulse return density—can lead to leaf area estimation
error in the active probe approach (MacArthur and Horn, 1969), we
found little evidence of this over the spatial scales and sampling in-
tensities of our analysis. We found that as long as pulse return density
was above a sufficiently high threshold—20returns m−2—LAD estima-
tion bias was insensitive to this factor. Regression parameters showed
low sensitivity to pulse return density (Fig. 4). If bias factors (Model 3
slopes), R2 values, or residuals had been highly and consistently vari-
able over pulse return density this would have been evidence for pulse

Fig. 9. Example of forest neighborhood analysis variables for TNF01 (“k67” flux tower site) comparing 2008 and 2012 lidar. The top two panels show 2m2 grid scale
variables of forest canopy surface heights and surface height changes. White grid lines show divisions into 1/4 plot grid cells, the grid scale of the lower four panels.
LAI from 2008 is presented with areas that fell below the pulse return density threshold filled with inverse distance weighted estimates; in LAI change and other
panels, these areas appear as white spaces. The average height of leaf area is derived from LAD profiles (equivalent to LAD weighted height), and offers information
about the vertical structure of vegetation change. The lowest right panel presents regression slopes resulting from cell-by-cell (1/4 ha neighborhood) comparison of
LAD profile deviations from vertical trends, addressing the consistency of vertical structural variation over surveys. Here slopes were significantly positively related
to LAI change, and closest to parity when LAI change was zero (standard error= 0.2981, R2=0.148; 1075 DF; p-value < 0.001; outliers above 1.5 and below zero
excluded).
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return density related bias. Instead, the regression parameters were
effectively constant above the 20 pulses m−2 threshold and below the
severe reductions in survey area that come with more-restrictive higher
pulse return density thresholds. Direct regression of survey deviations
of all neighborhood cells and all vertical positions on pulse densities
(from both lidar surveys) offered mixed results (detailed in Supple-
mentary material); here we found significant relationships, but these
explained very small percentages of variation,< 4% on average with a
maximum of 11%. Thus, our results are consistent with lidar sampling
intensity playing a role in leaf area estimation error (MacArthur and
Horn, 1969). But sampling intensity was not an appreciable source of
bias over the sites or pulse densities considered. Prior studies, however,
have described significant impacts of pulse return density on the quality
of lidar metrics, particularly maximum canopy heights (Roussel et al.,
2017; Zhao et al., 2018).

A unique aspect of our analysis was that it focused on the pulse
return density variation within each dataset, whereas most previous
studies focused on the pulse return density variation between datasets.
This allowed us to analyze a large range of pulse densities (i.e., the
density variation among grid cells ranged from 3 to over 100 pts m−2).
However, the pulse return density in our dataset, over 22 pts m−2 on
average, is higher than the densities in most of the regional or national
scale lidar surveys (typically ranging from 0.5 to 10 pts m−2) (Wulder
et al., 2012; Næsset et al., 2013; Shao et al., 2018b). To more com-
prehensively assess pulse return density related bias, a broader range of
values will be needed in the future (e.g., expanding sampling to cover
the 0.5–10 pts m−2 range).

Lidar survey parameters may have specific influences on LAD esti-
mation. Among parameters, the laser footprint trended towards a re-
lationship with correction factors, such that larger footprints appeared
to produce smaller LAD estimates before correction (Fig. S3). While
beam divergence was not significantly related to correction factors, we
note that it is a key specification that influences other acquisition
parameters. Larger beam divergence means lower beam energy, which
may require lower flight altitude and wider scan angle to maintain
footprint size and penetration rate, and the Sustainable Landscapes
project acquisition parameters appear to vary in accordance with this
constraint.

Future work could investigate the roles of survey parameters in leaf
area estimation more rigorously, by varying the parameters of acqui-
sitions in controlled contemporaneous resurveys. In this context, me-
chanistic explanations for the interaction between survey parameters
and leaf area estimation may be explored; leaf area estimation is based
on a light transfer analog, the MacArthur-Horn algorithm, that requires
a sensitivity constant to scale pulse reflection probability to leaf area
density. The influence of survey parameters on this constant may be
understood ultimately as the interplay of optical properties of leaves
and canopy structure and emission and detection components of the
lidar, which could be investigated with dedicated survey designs.

Ecological variation over the Sustainable Landscapes study sites was
apparent. After applying our calibration and validation approach we
found that some sites had tall canopies but bottom-heavy leaf area
profiles (e.g. TNF01), while others were shorter but had more LAD in
the upper regions of the canopy (e.g. DUC; Stark et al., 2012), while yet
others were intermediate between these extremes (e.g., JAM02).

5.2. Monitoring changing forest neighborhoods

Enhancing the capacity of lidar datasets to assess site-scale char-
acteristics like the mean vertical LAD profile with validation and cali-
bration will help reveal broad scale patterns of forest structure and
change (Longo et al., 2016; Stark et al., 2012). The fine-scale hetero-
geneity of forest canopy structure contains unique and valuable eco-
logical information on gap dynamics, forest demographic structure,
microenvironmental variation, and other factors (Stark et al., 2012,
2015; Keller et al., 2004; Antonaraki et al., 2011; Hunter et al., 2015).

Thus, we asked whether multitemporal multi-sensor lidar monitoring
could identify 1/4 ha ‘forest neighborhood’ scale heterogeneity and
change. When we compared the deviations of neighborhood LAD pro-
files from site means (controlled for local forest height) from successive
lidar surveys we found that structural variation was highly consistent,
i.e., variation was on average 60% predictable after one year. This was
true whether we were considering all neighborhoods and strata at once,
or analyzing neighborhood profiles one by one. Neighborhood profiles
tended to be correlated, and had an average RMA regression slope of 1,
indicating estimation parity, regardless of the length of interval be-
tween surveys. This demonstrated that site level bias correction results
were also applicable at the neighborhood scale, allowing analysis and
spatial interpretation of changes in canopy structure variables, which
we show for TNF01 in Fig. 9.

Turnover in forest structure is an ongoing process that should act to
reduce the similarity of any particular neighborhood with past states
through time. Consistent with this, we observed a decline from>60
to< 20% of variation in LAD profile deviations explained by prior
surveys as the time interval between surveys increased from one year to
nine years. Indeed, both anthropogenic and natural disturbances were
at play through time at these sites, likely considerably impacting ca-
nopy structure (Fig. 8; Longo et al., 2016). A limitation of our study is
that we cannot yet precisely offer uncertainty estimates for apparent
changes between subsequent surveys in specific neighborhoods. Fitting
either a linear, or nonlinear asymptotic function, to the time decay of
predictability (R2 values), however, offers a rough estimate, suggesting
that resurvey error rates may be as high as 20 or 30% (based on the
intercept at ‘zero years,’ Fig. 8; nonlinear fit not shown). In this case,
there would be around a 10% change attributable to growth and dy-
namics after a year. Future longer-term resampling will offer better
opportunities to partition error and turnover rates.

We hypothesized that canopy height changes, accurately detectable
on the well-surveyed canopy surface of the forest, could help pinpoint
LAD profile changes. The relationships between surface and LAD
change in vertical strata were generally weak, however, and decreased
with depth and forest stability (Fig. S2). Canopy surface change may
still be useful for identifying forest dynamics, but our results suggest
that significant variation in LAD change may be unrelated to canopy
surface dynamics. Sub-canopy surface dynamics could explain this—-
subdominant trees and branches can grow, die, and fall all under taller
canopy trees without impacting canopy surfaces.

6. Conclusions and implications for future research

Our study presents and evaluates a method to estimate total leaf
area (LAI) and the vertical profile of leaf area density (LAD profiles) for
sites, and 1/4 ha neighborhood grids within sites, from heterogenous
multitemporal multi-sensor lidar databases. Our study confirmed sys-
tematic variation in leaf area estimation by laser systems—‘sensor-in-
duced biases’—and provided an effective and convenient comparative
approach for correction. This approach relied on filtering to the highest
quality survey data, with the lowest chance of canopy change, before
regressing leaf area density estimates from subsequent surveys made
with different sensors to quantify sensitivity as the slope of the re-
lationship. Lidar pulse return density should exceed 20 points m−2 to
enable accurate calibration and leaf area estimation, but values above
this threshold did not have an important bias impact per se. The in-
terval length between surveys did not appear to systematically impact
bias detection, but shorter intervals should produce higher accuracy
calibrations. Calibration also enabled characterization of 1/4 ha forest
neighborhood heterogeneity, which displayed spatial variation that was
highly detectable by multi-sensor lidar resurveys, though with regres-
sion statistics that varied by survey interval, reflecting the decay of
forest similarity through time. Identifying significant leaf area changes
on a 1/4 ha cell by cell basis remains a challenge, but can be aided by
partial associations with canopy surface height changes and enhanced
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error estimation in future work.
Our calibration approach offers robust estimation of patterns of leaf

area variation at multiple spatial scales and should be undertaken for
any comparative analysis—consider that prior to correction, LAI esti-
mates from resurvey pairs were not related, while after correction the
R2 value jumped to> 0.8. This study demonstrates the feasibility and
consistency of lidar to quantify key characteristics of leaf area structural
variation with variable collections. Thus, lidar offers high throughput 3-
D assessment of forest canopies, providing information beyond simple
canopy surface height metrics that can be used to understand changing
carbon cycles, forests dynamics and other functions in Amazonian
forests, and likely elsewhere.

The Sustainable Landscapes Brazil dataset is of a high quality ap-
propriate for fine-scaled ecological research due to high pulse return
densities and other favorable scan characteristics. Future analysis could
encompass surveys with lower pulse densities and higher scan angles to
explore leaf area estimation bias in lower cost surveys. Prior calibration
approaches have not considered an array of sites, survey systems, and
sensors; however, given the need for coordinated monitoring to assess
climate change effects on forest processes over broad scales—an ob-
jective shared by Sustainable Landscapes and the National Ecological
Observatory Network (NEON) in the United States—we expect future
efforts to increasingly incorporate heterogeneous multi-sensor lidar
datasets. Our study suggests that increased understanding of the factors
that influence lidar based leaf area estimation and comparisons of lidar
systems through site resurveys—including with no time interval to
isolate measurement error—can support these efforts and critically
improve hypothesis testing. Ground collected leaf area profiles (see
Clark et al., 2008) from multiple locations and paired with airborne
lidar surveys are required to validate this method with the highest
rigor, and should not be overlooked as a funding priority, while ground
based lidar systems may offer additional validation opportunities (Stark
et al., 2012).
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