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Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Pre-
dominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field
sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire obser-
vations, and spectral data often lacks validationwith specific variables of change. Additional uncertainty remains
regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which ob-
servational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber
harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure
derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral
changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire
in central Oregon. Spatial regressionmodeling was assessed as amethodology to account for spatial autocorrela-
tion, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber
harvest. The strongest relationship (pseudo-r2= 0.86, p b 0.0001) was observed between the ratio of shortwave
infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships
between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with
strata height. Structural measurements made closer to the ground were not well correlated. The spatial regres-
sion approach improved all relationships, demonstrating its utility, but model performance declined across
pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study es-
tablishes that spectral indices such as d74 anddNBRaremost sensitive towildfire-caused structural changes such
as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Remote sensing plays a critical role in allowing resource managers
and scientists to assess fire effects across landscapes (Lentile et al.,
2006). The quantification of fire effects is critical to understanding eco-
logical impacts of fire, including evaluating ecosystem rehabilitation
needs (Hessburg et al., 2015; Turner et al., 1994), mitigating secondary
fire effects (e.g.,flooding and erosion) (Moody et al., 2008; Robichaud et
al., 2009), monitoring anomalies and trends in ecological recovery
(Cansler and Mckenzie, 2014; Eidenshink et al., 2007; Miller et al.,
2009), and quantifying carbon balance (Meigs et al., 2009; Randerson
et al., 2012). In light of the observed and projected increases in wildfire
activity under anthropogenic climate change (Abatzoglou andWilliams,
2016; Barbero et al., 2015), the ability to accurately quantify long-term
carbon stocks is necessary for understanding biosphere-atmosphere
feedbacks (Li et al., 2014). However, accurate spatiotemporal quantifi-
cation of fire effects has been a key limitation,which the remote sensing
community has worked to address. While considerable advances have
been made in relating observed changes associated with fire effects to
remote sensing data (Disney et al., 2011; Lentile et al., 2006; Smith et
al., 2016b), there are still knowledge gaps and several known sources
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of uncertainty that can lead to extensive errorswhen applied to regional
assessments (Kolden et al., 2015; Roy et al., 2006; Smith et al., 2016 a,b).

Most notably, considerable disconnects exist between burn severity
maps produced from relatively high-resolution, passive, spectral reflec-
tance data, and observed fire-induced changes in forest structure that
are readily related to aboveground carbon stocks and other metrics of
interest to the broader science community (Kolden et al., 2015; Lentile
et al., 2006). The products developed through the transformation of
post-fire reflectance data to spectral indices are interpreted as burn se-
verity, a term that does not currently have an agreed-upon biometric
definition (Keeley, 2009; Lentile et al., 2006). These products frequently
include the Normalized Burn Ratio, delta NBR (dNBR; Key and Benson,
2006), and the Relative dNBR (RdNBR;Miller and Thode, 2007); the lat-
ter two indices are calculated as a national United States product by the
Monitoring Trends in Burn Severity (MTBS) project (Eidenshink et al.,
2007). Burn severity maps are useful for a range of management
needs, and have been widely utilized for operational burned area reha-
bilitation efforts. However, they have also been used for research efforts
that require more robust data inputs, such as to model pyrogenic emis-
sions (Meigs et al., 2011), despite limited mechanistic validation of the
products (Kolden et al., 2015; Sparks et al., 2015).

The primary measure utilized to calibrate such indices and products
is the Composite Burn Index (CBI) (Key and Benson, 2006), a set of ob-
servations of surface changes inferred without pre-fire data and subject
to several limitations (Lentile et al., 2009). Measurements are ocularly
estimated (Lentile et al., 2009; Morgan et al., 2014; Zhu et al., 2006),
and are aggregated across vertical strata to a comprehensive, unitless
severity score that correlates poorly to both individual biometrics of in-
terest and spectral reflectance of the top-most surface (De Santis and
Chuvieco, 2007; Hudak et al., 2007). CBI protocol includes subjectively
reconstructing estimates of pre-fire conditions in the post-fire environ-
ment based on unburned areas in the vicinity of the plot (i.e., no pre-fire
data are collected), but it suggests placing plots amidst relatively homo-
geneous areas of fire severity. In stand-replacing fire regimes it is not
uncommon to have plots fall amid large areas of high severity with no
nearby indicators of pre-fire condition. This approach was developed
for management needs and provides data sufficient for many manage-
ment applications, but also yields data of unknown accuracy that are ex-
tremely difficult, if not impossible, to verify (Lentile et al., 2006;Morgan
et al., 2014; Smith et al., 2016b; Zhu et al., 2006). CBI has been the stan-
dard for burn severity assessment for over a decade, but as new data
types become available (e.g., LiDAR) and more existing field plots are
burned in fires,more robust fieldmethods should be developed to over-
come CBI limitations.

The difficulty in quantifying fire-induced change without pre-fire
measurements extends beyond the CBI protocol. There have been a
few research opportunitieswherefire burned through permanentmon-
itoringplots thatwere subsequently assessed (Bishop et al., 2014; Cocke
et al., 2005; Lutz et al., 2016; Wimberly and Reilly, 2007); however,
these studies have relied on small numbers of burned plots to represent
change over a large area. Long-term monitoring plots associated with
the Forest Inventory and Analysis (FIA) project (Gillespie, 1999) have
burnedwith greater frequency in recent years, but the re-measurement
intervals between FIA collections (5–10 years) can lead to considerable
disconnects between the fire event and the post-fire re-visit, reducing
the visibility and magnitude of those effects when data collection does
occur (Whittier and Gray, 2016). The lack of pre-fire observations for
themajority of field data utilized to calibrate burn severity spectral indi-
ces leads to inconsistency between the remote sensing measures that
quantify change between pre- and post-fire acquisitions and field cali-
bration measures that are limited to post-fire observations (Smith et
al., 2016b). Measuring only the post-fire environment cannot adequate-
ly represent the effects of fire, because it fails to capture the magnitude
of change, whether the observed changes are in fact directly caused by
the fire, or if another disturbance event is also contributing (Roy et al.,
2013; Smith et al., 2010; Smith et al., 2016b). Without the development
of physical linkages between spectral data and quantitativemeasures of
forest structure, errors in carbon quantificationwill extrapolate through
models, propagating errors (Kolden et al., 2015); to-date, only a limited
number of studies have sought to relate radiometric datasets tomecha-
nistic changes in vegetation following fires (Chuvieco et al., 2006; De
Santis et al., 2009; De Santis and Chuvieco, 2007; Disney et al., 2011;
Smith et al., 2016b).

The increasing acquisition frequency of airborne Light Detection and
Ranging (LiDAR) data over relatively large areas offers a potential alter-
native mode of measuring fire-induced ecological change and calibrat-
ing reflectance-based spectral indices to improve the models that use
index-based products. It has been well demonstrated in the remote
sensing literature that discrete-return LiDAR collected at high spatial
resolution can accurately measure forest height, percent canopy cover,
and provide three-dimensional canopy height and density metrics de-
scribing the vertical distribution of canopy material, aerodynamic
roughness (Hudak et al., 2009; Lefsky et al., 2002; Smith et al., 2009),
and gap size (Hudak et al., 2009; Kane et al., 2013). Analyzed in concert
with field data, LiDAR returns can also beused to predict forest structure
attributes such as basal area, volume, biomass, and leaf area (García et
al., 2010; Hudak et al., 2009; Lefsky et al., 2002). LiDAR has been suc-
cessfully used to quantify the effects of insect outbreaks in forests
(Bater et al., 2010; Bright et al., 2012), pre-fire fuel loading (Andersen
et al., 2005; García et al., 2011; Riaño et al., 2003, 2004; Seielstad and
Queen, 2003), and structural measurements of the post-fire environ-
ment (Bishop et al., 2014; Kane et al., 2013, 2014; Kwak et al., 2010;
Wulder et al., 2009). Structural datasets such as those derived from
LiDAR data have been previously highlighted as holding considerable
promise for directly quantifying changes in vegetation structure
(Smith et al., 2014), but acquisitions of high-resolution, comparable
pre- and post- fire LiDAR data that providemeasure offire-induced veg-
etation change have been limited (Bishop et al., 2014; Reddy et al.,
2015; Wang and Glenn, 2009; Wulder et al., 2009). However, multi-
temporal LiDAR is not a novel concept and has been widely applied to
quantify other ecosystem properties such as snow volume (Tinkham
et al., 2014), forest growth and harvest disturbance (Hudak et al.,
2012), boreal forest gap dynamics (Vepakomma et al., 2008), and
change in biomass resulting from a Gypsum moth (Lymantria dispar)
outbreak (Skowronski et al., 2014), among other applications.

The comparison of structural changes in vegetation derived from
multi-temporal LiDAR and spectral indices used to characterize burn se-
verity is relatively novel. To-date, only two known studies have been
able to spatially match pre- and post-fire LiDAR acquisitions in order
to objectively quantify fire effects on forest structure (Bishop et al.,
2014; Wulder et al., 2009), with additional studies by Wang and
Glenn (2009) focused on shrubs in steppe ecosystems and Reddy et al.
(2015) in peatlands. Neither of theprior studies in forest ecosystems ex-
plicitly linked LiDAR-derived forest structure metrics to the spectral in-
dices that are most commonly used to assess forest burn severity across
an entire fire; Bishop et al. (2014) assessed the Normalized Differenced
Vegetation Index (NDVI) on a small portion of a wildfire, while Wulder
et al. (2009) analyzed only a limited set of returns from a single LiDAR
transect. There is an urgent need to contextualize unitless spectral indi-
ces that are widely-utilized to characterize burn severity and model
emissions (e.g., dNBR and RdNBR) with specific environmental changes
such as vegetative structure. Multi-temporal LiDAR presents arguably
one of the best sources of contiguous forest structural data across
large geographical areas, emphasizing the critical need for additional
studies where pre- and post-fire LiDAR overlap.

One such opportunity arose following the 2012 Pole Creek Fire in
Central Oregon, USA, where post-fire LiDARwas acquired spatially coin-
cident with a pre-fire acquisition across an entire fire, featuring a gradi-
ent of forest types. Pre-fire LiDAR had been acquired in 2009 after
mountain pine beetle (Dendroctonus ponderosae) caused extensive
treemortality throughout the upper elevation lodgepole pine stands ap-
proximately a decade before thefire (Agne et al., 2016;McCarley, 2016).
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As no prior studies have assessed the impacts of insect outbreaks on the
relationships between spectral indices of burn severity and validation
data, this presented a particularly unique research opportunity.

The overarching objective of this study was to assess the ability of
spectral indices derived from Landsat imagery to predict biophysical
changes in forest structure inferred from pre- and post-fire LiDAR
data. Specifically, the authors sought to 1) quantify relationships be-
tween several common fire effects spectral indices and a suite of
LiDAR-derived forest structure metrics to identify the strongest rela-
tionships, 2) characterize the impacts of the pre-fire insect outbreak
and forest management on model performance, and 3) assess whether
integrating spatial autocorrelation improved the relationships between
spectral indices and LiDAR metrics, following Prichard and Kennedy
(2014).

2. Material and methods

2.1. Study area

The Pole Creek Fire occurred along the eastern CascadeMountains in
the Deschutes National Forest, approximately 30 kmwest of Bend, Ore-
gon (Fig. 1). Ignited by lightning on September 9th, 2012, the fire grew
to 10,800 ha before containment inmid-October. The fire burned across
a large elevational gradient (1200 to 2100m) and wide variety of forest
types, with dominant tree species including ponderosa pine (Pinus
ponderosa), lodgepole pine (Pinus contorta), mountain hemlock (Tsuga
mertensiana), and grand fir (Abies grandis). Forest canopy is mostly con-
tinuous across the area, although not extremely dense; average LiDAR
estimated canopy cover was 47% pre-fire and 30% post-fire. Two differ-
ent agents of forest change had considerably altered forest structure in
the area prior to the Pole Creek Fire. Mountain pine beetle impacted
58% of the area within the fire perimeter, while various types of forest
harvest took place across 11% of the fire area (McCarley, 2016).

2.2. Data pre-processing

Pre- and post-fire USGS Level 1 terrain-corrected (L1T) Landsat The-
matic Mapper (TM) and Operational Land Imager (OLI) scenes were
Fig. 1. Location of Pole Creek Fire (white outline) in central Oregon and the overlap of viable LiD
Agricultural Imagery Program (NAIP) imagery.
selected (Table 1) to meet best practices for scene selection for fire ef-
fects analysis described by Key (2006). This includes identifying scenes
with aminimal number of intervening years between pre- and post-fire
acquisition dates to minimize non-fire induced change, comparable
phenology, comparable sun angle to minimize shadowing, nonexis-
tence of snow or cloud cover over the burn area, data completeness,
andmaximizing the number of pixels for analysis. Based on the criteria,
scenes from the Landsat Enhanced Thematic Mapper-Plus (ETM+)
were excluded because they reduced the number of useable pixels con-
siderably. This eliminated scenes from 2012 and prompted the need to
utilize two different sensors for the pre- and post-fire images. However,
despite the differences in spectral channel and bit size between Landsat
OLI and the two previousmissions (Landsat TMand ETM+), priorwork
has indicated that once band brightness values are converted to top-of-
atmosphere reflectance there is no discernable difference in spectral
signature of burned surfaces (Koutsias and Pleniou, 2015).

Remaining candidate scenes were evaluated for best match. All of
the scene combinations had a few patches of snow at higher elevations,
creating interference with change analysis. Therefore, pixels containing
snow were excluded once the best phenological pair was determined.
For similar reasons open water bodies with seasonally variable levels
were also excluded, resulting in the omission of 1.6% of the pixelswithin
the fire perimeter. In order to prepare and standardize Landsat scenes
for multi-date comparison, band brightness values were transformed
to top-of-atmosphere reflectance (Chander and Markham, 2003), then
atmospherically corrected to at-surface-reflectance using the Cos(t)
model (Mahiny and Turner, 2007) and Dark Object Subtraction
(Chavez, 1996).

Discrete, multi-return LiDAR data were acquired pre- and post-fire
by the same vendor (Table 1) at a survey altitude of 900mabove ground
levelwith a 28°field of view (±14° fromnadir) and at least 50% side-lap
following recommendations of forestry LiDAR acquisition parameters as
highlighted by Evans et al. (2009). In each case, the vendor post-proc-
essed the LiDAR data in order to ensure geometric accuracy and develop
a 1-meter digital terrain model. Following data delivery, the heights of
the pre- and post-fire data were normalized by subtracting the terrain
model from the LiDAR point cloud using the USDA Forest Service's FU-
SION software package (McGaughey, 2014). Pre-fire LiDAR data were
AR and Landsat imagery (orange outlinewith crosshatch). Data overlaid on 2014 National

Image of Fig. 1


Table 1
Data acquisition parameters.

Date Sensor type Resolution

Pre-fire LiDAR October 7–11, 2009 Leica ALS50 Average 8 pulses/m2

Pre-fire multi-spectral imagea July 23, 2011 Landsat 5 TM Bands 1–5 and 7, 30 m
Band 6 (thermal), 120 m

Post-fire multi-spectral imagea June 10, 2013 Landsat 8 OLI Bands 1–7 and 9, 30 m
Bands 10 and 11 (thermal), 100 m
Band 8 (panchromatic), 15 m

Post-fire LiDAR October 8–11, 2013 Leica ALS50 Average 8 pulses/m2

a Scene located at Worldwide Reference System 2: Path 45, Row 29.
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re-projected using LAStools (Isenburg, 2013) from state plane into UTM
to match the post-fire LiDAR and Landsat data.
2.3. Spectral indices

Fifteen spectral indices were calculated based on the findings of
other studies that sought to quantify fire effects through use of remote
sensing data. Indices were calculated per equations provided in seminal
papers (Table 2). Following practices by Key (2006) and Cansler and
McKenzie (2012), an offset valuewas applied that accounted for pheno-
logical differences between the pre- and post-fire images by identifying
homogenous reference forested areas outside of the fire perimeter and
computing the mean value for each spectral index in those areas.
Under the assumption that unchanged reference areas should have a
differenced index value of zero, the entire scenewas adjusted by adding
or subtracting the value of the reference mean for each index. These in-
dices, as well as individual Landsat reflectance bands, were used as pre-
dictor variables for LiDAR-derived structure metrics in the analysis.
2.4. LiDAR metrics

The metrics used in this study (Table 3) were selected based on use
in other forestry applications (e.g., Hudak et al., 2012;Wing et al., 2012),
comparability with fire-effects strata assessed in the widely-used CBI
(Key and Benson, 2006), and theoretical sensitivity to fire effects.
Based on the recommended definition of surface fuel by Brown et al.
(1982), a 1.8 m threshold was used for calculating canopy cover
(above 1.8 m) and mean surface fuel height (below 1.8 m).
Table 2
Remotely sensed spectral predictors.

Index acronym Change spectral index Derivation

dB, dG, dR, dNIR,
dSWIR1,
dSWIR2

Δ Landsat bands (blue, green, red, near infrared,
shortwave infrared 1, and shortwave infrared 2)

–

dNBR Δ Normalized burn ratio (ρNIR − ρSWIR2) / (ρ

RdNBR Relative dNBR dNBR / √(|NBRpre|)

dNDVI Δ Normalized differenced vegetation index (ρNIR − ρr) / (ρNIR +
dMIRBI Δ Mid-infrared bi-spectral index 10ρSWIR2 − 9.8ρSWIR

dCSI Δ Char soil index ρNIR / ρSWIR1

dSAVI Δ Soil adjusted vegetation index (ρNIR − ρr)(1 + L) /
dTCB, dTCG,
dTCW

Δ Tasseled cap brightness, greenness, and
wetness

(ρb ∗ ε) + (ρg ∗ ε) +

dPC1, dPC2,
dPC3

Δ The first three principle components (dB ∗ α) + (dG ∗ α

dDWI Δ Normalized differenced water index (ρNIR − ρSWIR1) / (ρ
d74 Δ Band 7/4 ratio ρSWIR2 / ρNIR

d75 Δ Band 7/5 ratio ρSWIR2 / ρSWIR1

All spectral indices analyzed as the difference from pre- to post-fire; ρ = at-surface reflectance
efficients for linear transformation, defined by Crist (1985);α=coefficients for principle comp
component transform (based on covariance matrix) and are defined in Table S1.
The LiDARmetricswere generated byfirst binning the pre- andpost-
fire height normalized LiDAR point clouds into 30-meter voxels that
spatially matched the Landsat pixel data (Fig. 2). Using FUSION, select
statistics for each 30-meter voxel cell were calculated and converted
into individual rasters. Given small vertical errors in the surface model
and subsequent normalized LiDAR cloud (Tinkham et al., 2012), only
returns above 0.15 mwere used such that primarily vegetative changes
would be measured. From the resulting rasters, both absolute change
(pre − post) and relative change ((pre − post) / pre) were calculated
to generate the LiDAR metrics used in analysis.
2.5. Analysis

To quantify relationships between LiDAR-derived metrics of forest
structural change and spectral indices commonly used to quantify
burn severity, a preliminary screening was first conducted. A Pearson's
correlation coefficient was calculated for all combination pairs of
differenced spectral indices and differenced LiDAR metrics in order to
eliminate redundancy and insignificant models. Poorly correlated pairs
(less than an absolute value of 0.5) were eliminated from further evalu-
ation. The remaining pairs were assessed using pairwise ordinary least
squares (OLS) regressions and comparing their r2 values. All statistics
were computed in the software R (R Development Core Team, 2014).

To assess model consistency across bark beetle impacts and forest
harvest areas, the fire area was stratified into three classes: pixels im-
pacted by bark beetles pre-fire (MPB), pixels impacted by forest harvest
pre-fire (MGMT), and pixels with no pre-fire impacts (Fire; McCarley,
2016). OLS regression models were calculated predicting LiDAR-in-
ferred change in canopy cover (dCC) from d74, dNBR, RdNBR for each
Key reference

–

NIR + ρSWIR2) (Key and Benson,
2006)

/ 1000 (Miller and Thode,
2007)

ρr) (Rouse et al., 1974)
1 + 2.0 (Trigg and Flasse,

2001)
(Smith et al., 2007)

(ρSWIR1) (Huete, 1988)
(ρr ∗ ε) + (ρNIR ∗ ε) + (ρSWIR1 ∗ ε) + (ρSWIR2 ∗ ε) (Crist, 1985; Kauth

and Thomas, 1976)
) + (dR ∗ α) + (dNIR ∗ α) + (dSWIR1 ∗ α) + (dSWIR2 ∗ α) (Patterson and

Yool, 1998)
NIR + ρSWIR1) (Gao, 1996)

(Kushla and
Ripple, 1998)
(Epting et al., 2005)

for band ρx, where x is given by the Landsat sensor; L = soil constant set to 0.5; ε= co-
onent analysis were derived from pixels within the fire using an unstandardized principle



Table 3
LiDAR metrics of forest structure.

Metric
acronym

LiDAR Metric Interpretation

(pre − post)
dMHT Mean of returns Δ Mean vegetation height
dSD Standard deviation of returns Δ Vegetation height standard

deviation
dSKW Skewness value of returns Δ Vegetation height skewness
dS1 Percent of returns b1 m Δ Percent returns in 1st strata
dS2 Percent of returns ≥1 m and ≤5 m Δ Percent returns in 2nd strata
dS3 Percent of returns N5 m and ≤8 m Δ Percent returns in 3rd strata
dS4 Percent of returns N8 m and ≤20 m Δ Percent returns in 4th strata
dS5 Percent of returns N20 m Δ Percent returns in 5th strata
dMSFH Mean height of returns ≤1.8 m Δ Mean surface fuel height
dCC Percent of returns N1.8 m Δ Percent canopy cover
dCRR Using vegetation heights:

(mean − min) / (max − min)
Δ Canopy relief ratio

dCD Mean vegetation height ∗ canopy
cover

Δ Canopy density

(pre − post) / pre
RdMHT Mean of returns Relative Δ mean vegetation

height
RdSD Standard deviation of returns Relative Δ vegetation height

standard deviation
RdSKW Skewness value of returns Relative Δ vegetation height

skewness
RdS1 Percent of returns b1 m Relative Δ percent returns in

1st strata
RdS2 Percent of returns ≥1 m and ≤5 m Relative Δ percent returns in

2nd strata
RdS3 Percent of returns N5 m and ≤8 m Relative Δ percent returns in

3rd strata
RdS4 Percent of returns N8 m and ≤20 m Relative Δ percent returns in

4th strata
RdS5 Percent of returns N20 m Relative Δ percent returns in

5th strata
RdMSFH Mean height of returns ≤1.8 m Relative Δ mean surface fuel

height
RdCC Percent of returns N1.8 m Relative Δ percent canopy

cover
RdCRR Using vegetation heights:

(mean − min) / (max − min)
Relative Δ canopy relief ratio

RdCD Mean vegetation height ∗ canopy
cover

Relative Δ canopy density
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stratified class and a class of all pixels (Universal), resulting in four re-
gression models for each spectral index. Each of the four models was
then applied to all four classes of pixels (MPB, MGMT, Fire-only, All)
to determine how accurately any given model could predict dCC within
a class of pixels. Accuracy was quantified by calculating the root mean
square error (RMSE) for each model-class combination between actual
change in percent canopy cover (Δ%CC) from dCC and Δ%CC predicted
by the model.

While some studies have sought to improve model predictions of
burn severity through inclusion of environmental data at mismatched
spatial scales (e.g., Birch et al., 2015; Dillon et al., 2011; Kane et al.,
2015), simultaneous autoregressive modeling, a form of spatially
weighted regression, has been shown to improve on non-spatially ex-
plicit regression models (Cressie, 1993; Haining, 1990; Lewis et al.,
2011). Simultaneous autoregression incorporates the spatial autocorre-
lation in burn pattern, providing a proxy for other influential variables
(i.e., geomorphic or climatic process) not included in the model
(Kissling and Carl, 2007; Prichard and Kennedy, 2014; Wimberly et al.,
2009). Therefore, this study hypothesized that using a spatially explicit
model would improve the relationship between LiDAR metrics and
spectral indices.

To test this hypothesis, the outputs of spatial and non-spatial models
were compared. The simultaneous autoregression produces a
Nagelkerke pseudo-r2 (Nagelkerke, 1991), which is not directly compa-
rable to an OLS r2. Like r2, the pseudo-r2 ranges from a low of zero to a
high of one, so a higher pseudo-r2 will reflect a better prediction,
making the pseudo-r2 value is an acceptablemethod to compare the re-
lationships between spectral indices and LiDARmetrics. However, while
r2 is ameasure of variation explained by themodel, Nagelkerke pseudo-
r2 describes the improvement of the fitted model over the null model.
Pseudo-r2 values are more difficult to interpret because they cannot
be similarly interpreted between data sets. Therefore, AIC was used to
assess model improvement. The simultaneous autoregressive model
was applied in R using the ‘spdep’ package (Bivand, 2002), following
the equation:

Y ¼ Xβþ λW Y−Xβð Þ þ ε

where Y is the dependent variable, X is the explanatory variable, β is the
vector of coefficients, λ is the autoregressive coefficient, W is the row-
standardized matrix of spatial weights, and ε is the uncorrelated error
term (Cressie, 1993; Haining, 1990). The spatial weightsmatrix was de-
fined to give weight to pixels within a pre-defined neighborhood based
on the inverse of the distance from focal center to the center of neigh-
boring pixels. These values were then row-standardized, giving the
neighboring pixels a total summed weight of one, and all other pixels
a weight of zero. Following the recommendation of Kissling and Carl
(2007) and practice of other wildfire studies incorporating simulta-
neous autoregression (Meigs et al., 2016; Prichard and Kennedy,
2014), neighborhood pixels were defined as those centered within
60 m because it minimized Akaike's Information Criterion (AIC;
Akaike, 1974) and residual spatial autocorrelation over other possible
neighborhood distances explored. Due to the large number of observa-
tions, a Chebyshev sparse matrix approach was applied that estimates
the autoregressive coefficient rather than calculating it directly from ei-
genvalues (Pace and LeSage, 2004). Thismethod allowed us to apply the
model to a much larger area than would be computationally possible
otherwise, avoiding having to subsample the data as others have
(Lewis et al., 2011; Wimberly et al., 2009).

3. Results

The r2 values for the 63 viable OLS regressionmodelswere plotted in a
matrix to examine the magnitude and quality of the relationships
between spectral indices and LiDAR metrics (Fig. 3; Table S2). The best-
observed relationship was between d74 and change in canopy cover
(dCC; r2 = 0.63), followed by d75 and dCC (r2 = 0.62), dSWIR2 and
dCC (r2 = 0.52), and dMIRBI and relative change in canopy cover
(RdCC) (r2 = 0.52). OLS regression models utilizing dCC produced the
highest r2 values (or only r2 whereas other LiDAR metrics did not pass
preliminary screening) for 11 of the 15 spectral indices (dSWIR2, dNBR,
dNDVI, dTCW, dPC1, d74, d75, dB, dG, dSAVI, and dNDWI indices). The
surface and understory metrics, including those describing surface fuel
height (dMSFH, RdMSFH) and the lower-to-mid strata of the forest
(dS2, dS3, RdS2), modeled poorly relative to the upper strata and canopy
metrics, and r2 values decreased closer to the surface. The highest r2 found
for the subcanopy metrics was between the change in percent returns
from 5 to 8 m (dS3) and d75 (r2 = 0.41), while the highest r2 found for
surface metrics was between the relative change in mean surface fuel
height (RdMSFH) and both dNDVI and d74 (r2 = 0.28). The worst r2

value for a model not eliminated was between dPC1 and relative change
in percent returns 1–5 m (RdS2; r2 = 0.25). All models were statistically
significant (p b 0.0001), even poorly performing ones, due to the
extremely large sample size (n = 117.520).

In general, all models produced lower RMSE when applied to the
source class of pixels as opposed to other pixel classes (Fig. 4). The
highest RMSE corresponded to models utilizing RdNBR for MPB pixels
using models developed in Fire (22.1 Δ%CC) or MGMT (19.3 Δ%CC)
source pixels. RMSE differences between the three spectral indices
were smallest when the models developed in fire pixels and MGMT
pixels were applied to MGMT pixels. The largest discrepancy between
indices was for the model developed in fire pixels applied to all pixels



Fig. 2. LiDAR-derived (a) pre-fire canopy cover (%CC), (b) post-fire canopy cover (%CC), (c) change in canopy cover estimated by LiDAR (Δ%CC), and (d) the delta normalized burn ratio
index (dNBR). Fire perimeter shown in red.
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or MPB pixels. In this case, RdNBR performed significantly worse (17.8
Δ%CC and 22.1 Δ%CC) than the dNBR (11.0 Δ%CC and 12.4 Δ%CC) and
d74 (9.0 Δ%CC and 9.3 Δ%CC). The Universal model utilizing d74 for
all pixels had the lowest RMSE (8.4 Δ%CC and 8.5 Δ%CC) when applied
to the MPB and Fire pixel classes, and the highest RMSE (12.3 Δ%CC)
when applied to the MGMT class. Consistently for all spectral indices,
the MGMT model yielded the highest RMSE values when applied to
the non-MGMT classes (Fire, MPB, and All pixels).

Pseudo-r2 valueswere generatedusing simultaneous autoregression
and plotted for each of the model pairs (Fig. 5; Table S3). With spatial
autocorrelation accounting for the influence of unknown predictor
variables, the best-observed relationship was still between d74 and
dCC (pseudo-r2 = 0.86), followed by dNBR and dCC (psuedo-r2 =
0.85), dNDVI and dCC (pseudo-r2 = 0.84). Change in canopy cover
(dCC) was the best predicted LiDAR metrics for all spectral indices
(pseudo-r2 ranging from 0.79 to 0.86; Fig. 5), followed by change in per-
cent returns 8–20 m (dS4), RdCC, and change in percent returns 5–8 m
(dS3). RdS2 uniformlyhad theweakest association to all spectral indices
(pseudo-r2 ranging from 0.45 to 0.47). All of the spatial models were
also statistically significant (p b 0.0001). The AIC values were compared
for the spatially explicit and OLS models for each of the 63 viable pairs
(Fig. 6; Table S4). For all pairs the AIC value was lower using

Image of Fig. 2


Fig. 3. Comparison of r2 values for pairwise ordinary least squares (OLS) regression between LiDAR metrics and spectral indices; models with a Pearson's Correlation below an absolute
value of 0.5 omitted (preliminary screening); dS2, delta percent returns tall shrubs and trees 1–5 m; dS3, delta percent returns tall shrubs/intermediate trees; dS4, delta percent
returns intermediate trees/upper canopy; dMSFH, delta mean surface fuel height; dCC, delta canopy cover; RdS2, relative delta percent returns tall shrubs and trees 1–5 m; RdMSFH,
relative delta mean surface fuel height; RdCC, relative delta canopy cover; RdCD, relative delta canopy density; dB, delta blue; dG, delta green; dR, delta red; dSWIR2, delta shortwave
infrared 2; dNBR, delta normalized burn ratio; dNDVI, delta normalized differenced vegetation index; dMIRBI, mid-Infrared bi-spectral index; dSAVI, delta soil adjusted vegetation
index; dTCG, delta tasseled cap greenness; dTCW, delta tasseled cap wetness; dPC1, delta principle component 1; dPC3, delta principle component 3; dNDWI, delta normalized
differenced wetness index; d74, delta band 7/4 ratio; d75, delta band 7/5 ratio.
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simultaneous autoregression, indicating model improvement (Fig. 7).
The biggest decrease in AIC was observed for dSAVI and dCC, while
the smallest was between d75 and RdS2. Across spectral indices, dCC
and dS4 saw the greatest improvement from simultaneous
autoregression.

4. Discussion

4.1. Regression relationships

LiDAR-inferred change in canopy cover (dCC) was the biophysical
fire effect most accurately predicted from spectral remote sensing
from the LiDAR metrics and spectral indices evaluated. The dCC was
most accurately predicted by indices that contrasted the short-wave
infrared band (SWIR2) with the near-infrared (NIR), including the
delta 7/4 band ratio and the dNBR. Neither of these results is particularly
novel, rather, they validate across an entire fire the relationships that
have been demonstrated for only small sets of field plots that are almost
never randomly sampled due to the challenges of randomly locating
plots in complex and often hazardous post-fire terrain (Key and
Benson, 2006).

Relationships with spectra improved closer to the top of the canopy;
other than absolute and relative changes in canopy cover, the best cor-
related LiDAR metrics were for change in percent returns for 5–8 m
(dS3) and 8–20 m (dS4). The model improvements observed with in-
creasing height strata highlight the difficulty of measuring reflectance
values anywhere but the top-most-surface, and validate previous re-
ports that spectral remote sensing is not fully able to detect changes in
the understory (Hudak et al., 2007; Kolden et al., 2012; Wulder et al.,
2009). The exception to this trend was the poor relationship observed
between change in percent returns above 20 m (dS5) and the spectral
indices. While 73% of pixels had pre- and post-fire LiDAR returns
above 20 m, they were usually few in number, having a median value
of only 3–4% of all returns in the pixels having returns in that stratum.
The weak relationships between dS5 or RdS5 and all of the spectral in-
dices potentially result from the lack of vegetation in most areas across
that stratum (largely treetops).

SWIR2 wavelengths demonstrated the strongest relationship to
structural change. Change in canopy cover (dCC) was only weakly cor-
related to dB, dG, and dR. A stronger relationship with dNIR or dR and
dCC was expected given the sensitivity of these bands to fire-induced
changes in vegetation (Chuvieco et al., 2002; Rogan and Yool, 2001).
However, the poor relationship with dNIR is consistent with Smith et
al. (2009), who demonstrated that near infrared reflectance was insen-
sitive to mean LiDAR plot height. It is also explained by the inclusion of
both non-photosynthetic vegetation (including both branches and dead
or scorched needles) and live, photosynthetic vegetation in the canopy
covermetric in this dataset.While return intensity values can be used to
discriminate between live and dead trees in order to more accurately
quantify change in live canopy, the pre-fire LiDAR data did not include
the aircraft trajectory files needed to normalize intensity values in
order to make pre-fire and post-fire intensities comparable (Bright et
al., 2013).

Although a strong correlation to dNIR or dR was not observed,
dNDVI was a relatively good indicator of LiDAR-derived metrics, partic-
ularly change in canopy cover. This may suggest that the proportion of
dead treeswith needles still on providing error in the canopy covermet-
ric was not significant. Using simultaneous autoregression, the indices
that had the best relationship to dCC were d74 and dNBR, both of
which use the SWIR2 and NIR bands. The individual SWIR2 band was
observed to have a strong relationship with dCC, while dNIR was a
strong predictor only when used in combination with other bands

Image of Fig. 3


Fig. 4. Root mean squared error (RMSE) percentages for the application of regression models to classes of pixels for four different pixels class groups: All pixels within the burned area
(Universal model), Fire-only pixels (Fire), pixels affected by Forest timber management pre-fire (MGMT), and pixels affected by mountain pine beetle pre-fire (MPB). Each regression
model (panels a through d) predicts the change in percent canopy cover (dCC) for each of the four classes of pixels (x-axis groupings in each panel) from three spectral indices: the
delta Normalized Burn Ratio (dNBR), Relative dNBR (RdNBR), and the delta band 7/5 ratio (d75).
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(i.e., d74, dNBR, dNDVI). Many other studies have indicated that SWIR2
and NIR provide the best correlation with field measurements incorpo-
rating fire effects on all strata (Key and Benson, 2006; Miller and Yool,
2002; van Wagtendonk et al., 2004; White et al., 1996). Based on the
findings in this study, SWIR2 appears to be the most sensitive band for
detecting fire-induced changes for canopy cover.

These results present further evidence to support the position that it
may be inappropriate to use spectral indices that have only been vali-
dated for comprehensive estimates of burn severity in limited ecosys-
tems as proxies for specific burn severity biometrics at regional to
global scales (Kolden et al., 2015; Lentile et al., 2006; Smith et al.,
2016b). Specifically, the results presented here suggest that the “valida-
tion” of spectral indices with comprehensive field measures such as the
Composite Burn Index is particularly problematic, particularly as canopy
cover increases, as the spectral signal is primarily sensitive to the top of
the canopy and not very sensitive to the understory. Chuvieco et al.
(2006) described this strata mixing problem and the use of radiative
transfer models (RTMs) as an alternative. However, subsequent results
further testing RTMs for this purpose (De Santis and Chuvieco, 2007;
Disney et al., 2011) have been largely ignored in the subsequent litera-
ture that continues to focus on correlating CBI to spectral reflectance as
“validation” of certain burn severity spectral indices. This is particularly
true in the United States, where these correlations are meant to justify
the use of dNBR and RdNBR burn severity products (e.g., MTBS) for a
range of applications based on these validations, despite increasing ev-
idence that alternative spectral indices such as dNDVI or dPRI (photo-
chemical reflectance index; Gamon et al., 1992) are more strongly
responsive to specific ecophysiology traits, such as responses in net
primary productivity and plant mortality (e.g., Sparks et al., 2016;
Smith et al., 2016b).
4.2. Model consistency across agents of change

Model accuracy was inconsistent across stratified pre-fire agents of
change, including pre-fire Management (MGMT) and Mountain Pine
Beetle (MPB), with two implications. First, the considerably greater er-
rors associated with applying models derived from MGMT and MPB
pixel classes suggest that these pre-fire agents of change may consider-
ably alter the predicted fire impacts in this ecosystem. This concern is
specifically directed at canopy cover, as that is the forest structure met-
ric the spectral indices most strongly predicted. For MPB, this is not sur-
prising given that there is minimal pre-fire canopy cover across highly
affected areas.

Second, it is evident that sampling bias can occur when pre-fire
agents of change impact a large area of the fire but are not accounted
for in the sampling design. While there is widespread acceptance of
sampling stratification in fire ecology and applied ecological remote
sensing more broadly, stratification often focuses on dominant vegeta-
tion types, or levels of wildfire burn severity (Key and Benson, 2006;
Hudak et al., 2007; Lentile et al., 2009). The models developed across
all pixels (the Universal model) and from Fire only pixels yielded the
most consistent error across pixels classes, while themodels developed
fromMGMT andMPB pixels only performed well for that class of pixels
and not the other classes. This suggests that if a universal model is to be
applied to such analyses, sampling should be stratified appropriately to

Image of Fig. 4


Fig. 5.Comparisonof pseudo-r2 values for simultaneous autoregressivemodeling between LiDARmetrics and spectral indices;modelswith a Pearson's Correlation belowanabsolute value
of 0.5 omitted (preliminary screening); dS2, delta percent returns tall shrubs and trees 1–5 m; dS3, delta percent returns tall shrubs/intermediate trees; dS4, delta percent returns
intermediate trees/upper canopy; dMSFH, delta mean surface fuel height; dCC, delta canopy cover; RdS2, relative delta percent returns tall shrubs and trees 1–5 m; RdMSFH, relative
delta mean surface fuel height; RdCC, relative delta canopy cover; RdCD, relative delta canopy density; dB, delta blue; dG, delta green; dR, delta red; dSWIR2, delta shortwave infrared
2; dNBR, delta normalized burn ratio; dNDVI, delta normalized differenced vegetation index; dMIRBI, mid-Infrared bi-spectral index; dSAVI, delta soil adjusted vegetation index; dTCG,
delta tasseled cap greenness; dTCW, delta tasseled cap wetness; dPC1, delta principle component 1; dPC3, delta principle component 3; dNDWI, delta normalized differenced wetness
index; d74, delta band 7/4 ratio; d75, delta band 7/5 ratio.
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minimizemodel error, or separate models should be developed for spe-
cific groups of pixels.

4.3. Simultaneous autoregressive model

All models were improved by the use of simultaneous
autoregression, supporting its previously stated value for landscape as-
sessment of fire effects (Meigs et al., 2016; Prichard and Kennedy, 2014;
Fig. 6. Density scatterplots (blue) for the two best relationships observed using the simultaneo
(d74) and delta normalized burn ratio (dNBR). Both were used to predict change in canopy co
Wimberly et al., 2009). The greatest improvement in AIC was observed
for change in canopy cover (dCC),whichwas already the best-predicted
structural changemeasure. Prior attempts tomodel burn severity across
landscapes have found topography to be among the strongest predic-
tors of burn severity (Birch et al., 2015; Dillon et al., 2011; Kane et al.,
2015). However, these studies note the limitations of trying to model
burn severity at 30-meter spatial resolution utilizing predictor variables
that are either only available at coarser spatial resolutions, such as
us autoregression model (black line). Spectral indices used were the delta band 7/4 ratio
ver (dCC).

Image of Fig. 5
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Fig. 7. Improvement over ordinary least squares (OLS) models through the use of simultaneous autoregressive (SAR) modeling measured by difference in Akaike information criterion
(AIC) values (positive indicates improvement, zero no change, and negative suggests worsening); models with a Pearson's Correlation below an absolute value of 0.5 omitted
(preliminary screening); dS2, delta percent returns tall shrubs and trees 1–5 m; dS3, delta percent returns tall shrubs/intermediate trees; dS4, delta percent returns intermediate trees/
upper canopy; dMSFH, delta mean surface fuel height; dCC, delta canopy cover; RdS2, relative delta percent returns tall shrubs and trees 1–5 m; RdMSFH, relative delta mean surface
fuel height; RdCC, relative delta canopy cover; RdCD, relative delta canopy density; dB, delta blue; dG, delta green; dR, delta red; dSWIR2, delta shortwave infrared 2; dNBR, delta
normalized burn ratio; dNDVI, delta normalized differenced vegetation index; dMIRBI, mid-Infrared bi-spectral index; dSAVI, delta soil adjusted vegetation index; dTCG, delta tasseled
cap greenness; dTCW, delta tasseled cap wetness; dPC1, delta principle component 1; dPC3, delta principle component 3; dNDWI, delta normalized differenced wetness index; d74,
delta band 7/4 ratio; d75, delta band 7/5 ratio.
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climate and weather, or are modeled products that contain error, such
as vegetation. This suggests that a simultaneous autoregressive model
approach may provide the best proxy for specific biophysical measures
of change (i.e., change in canopy cover), as it allows for consideration of
additional explanatory environmental variables known to contribute to
fire behavior (e.g., climate, topography, and vegetation)without requir-
ing that these variables be included in the models (Kissling and Carl,
2007), as data for these variables are often found at spatial scales
much lower in resolution than fire effects data.

4.4. Management implications: dNBR and RdNBR

The dNBR and RdNBR spectral indices are widely applied within the
United States and are the primary spectral indices within theMTBS pro-
ject (Eidenshink et al., 2007). In addition, studies have been applying
this methodology more broadly including research in Canada (Soverel
et al., 2010) and Greece (Veraverbeke et al., 2010). Given the wide-
spread use in the US and adoption as the primary spectral indices for
theMTBS project, a discussion of dNBR and RdNBR performance as pre-
dictors of fire effects is warranted. In this study, dNBR outperformed
RdNBR across all structural metrics. This was foremost the result of
two distinctly different relationships observed between RdNBR and
the LiDAR metrics, which was not observed for dNBR (Fig. 8), and do
not fit a linear or non-linear model. Further investigation revealed that
in areas where pre-fire NBR was near zero and post-fire NBR was nega-
tive, the RdNBR equation produced unreasonably high values outside
the expected range of −2000 to 2000 (Miller and Thode, 2007);
McCarley (2016) determined that nearly all of these pixels (96%) were
in areas affected by pre-fire mountain pine beetle mortality. These re-
sults contradict studies that suggest RdNBRwould performbetter in for-
ests where pre-fire disturbance has resulted in low-density vegetation
cover (Miller and Thode, 2007). They also raise questions regarding
recent studies that have assessed the impact of mountain pine beetle
outbreaks on subsequent fire severity where RdNBR was used as a
proxy for burn severity (Meigs et al., 2016; Prichard and Kennedy,
2014). (Parks et al. (2014) have highlighted this problem with RdNBR,
and proposed the Relativized Burn Ratio (RBR) to address it. However,
the RBR is neither widely utilized, nor does it follow best practices for
development of new spectral indices to assess fire effects (Roy et al.,
2006; Trigg and Flasse, 2001). Consequently, it was not assessed here.

The poor performance of RdNBR in areas impacted by pre-fire MPB
mortality and pre-fire forest management and harvest (MGMT) is fur-
ther illuminated in the assessment of model consistency (Fig. 4). As
RdNBR was initially found to be a poor predictor of change in canopy
cover (dCC) in the preliminary screening, it is not surprising that the
RMSE values for the RdNBR models were higher than observed for
d74 or dNBR models. What is particularly notable, however, is that the
Fire-only RdNBR model applied to the group of pixels affected pre-fire
by MPB produces the highest RMSE (22.1 Δ%CC) across the entire con-
sistency assessment. This suggests that RdNBR performs very poorly
when used to assess fire effects in MPB-affected forests. This agrees
with Parks et al. (2014), who tested their proposed RBR index against
dNBR and RdNBR for several fires and found that all indices (but partic-
ularly RdNBR) demonstrated the lowest correlations to field CBI for the
2006 Tripod Fire inWashington State, where nearly one-third of thefire
area experience extensive MPB-induced tree mortality prior to the fire
(Hicke et al., 2015).

4.5. Future work

One obvious limitation is that this study was conducted on a single
fire that burned primarily in lodgepole pine and mixed conifer forest,
thus additional work may be necessary to develop a robust model that
can be used in different forest types. Nonetheless, the primary objective

Image of Fig. 7


Fig. 8. Relative delta normalized burn ratio (RdNBR; left) anddNBR (right) versus and change in percent canopy cover estimatedby LiDAR, plotted for comparison at different x-axis ranges
to show a separate trend occurring at high RdNBR values, but not for dNBR: −500 to 1500 (top) and −5000 to 15,000 (bottom).
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was not to establish a universalmodel between spectral remote sensing
and structural change, but rather to validate the utility of Landsat spec-
tral change indices by exploiting the opportunity afforded in the avail-
ability of overlapping pre- and post-fire LiDAR acquisitions for this
fire. LiDAR provides a physical measure of vegetation structure and
change that can be binned at a resolution commensurate with Landsat.
The relationships that were observed suggest that further study is war-
ranted in other vegetation types, but as acquisition of LiDAR data in-
creases, it is likely that more paired pre- and post-fire datasets will
become available to replicate the validation of Landsat sensor-derived
spectral indices of fire effects. The need to define ecosystem-specific
models that predict specific fire-induced forest structural change met-
rics at regionally significant scales is documented (Kolden et al.,
2015), but as long as LiDAR remains cost-prohibitive, a robust spectral
proxy derived from freely available Landsat data can provide effective
measures of biophysical change that managers and scientists need.

In this study, the change in all LiDAR points was analyzed, regardless
of other attributes. However, recently other studies have introduced the
possibility of separating live and dead LiDAR returns using intensity
values (Casas et al., 2016; Kim et al., 2009; Wing et al., 2015). This dis-
crimination may enhance future models since refining dCC specifically
to change in live canopy cover would likely produce stronger correla-
tions to spectral change in the NIR. As noted above, this study was not
able to discriminate between live and dead returns due a lack of the nec-
essary information to normalize return intensity values for the pre-fire
acquisition.

LiDAR also offers the opportunity to derive useful data such as bio-
mass, basal area, or leaf area index in places where field calibration
sites are available (Hudak et al., 2009; Lefsky et al., 2002). The relation-
ship between spectral data and these measurements may offer insights
that structural metrics cannot. Given the importance of accurately
modeling carbon emissions, LiDAR derived measures of change in bio-
massmay prove particularly critical in continuing to evaluate the ability
for spectral remote sensing to measure emissions and be scalable re-
gionally and globally.

Finally, the issues that were observed with RdNBR in areas
experiencing pre-fire mountain pine beetle mortality suggest a need
to explore the effect of pre-fire disturbance on the ability to accurately
model fire effects across a mosaic of forest history. While numerous
studies have examined the relationship between mountain pine beetle
and burn severity (e.g., Agne et al., 2016; Harvey et al., 2014; Meigs et
al., 2016), none have addressed this issue at the landscape scale using
measures of severity other than reflectance. The availability of pre-
and post-fire LiDAR presents a rare opportunity to understand the effect
of mountain pine beetle on subsequent structural change cause by
wildfire.

Image of Fig. 8
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5. Conclusions

This work addresses a critical gap in understanding the relationship
between biophysical fire effects and spectral remote sensing by using
multi-temporal LiDAR across an entire fire to measure fire-induced
change in forest structure. By using LiDAR, the study overcame the pri-
mary difficulty with comparing multi-temporal spectral data to field
measurements: the lack of pre-fire field observations. In this analysis,
it was demonstrated that certain spectral indices, most notably d74
and dNBR, accurately detected change in canopy cover. There was not
significant evidence for accurate detection of structural change in
lower forest strata, suggesting that spectral remote sensing is primarily
limited to detecting fire-induced changes in the top-most-surface. This
finding is significant given the current use of reflectancedata to evaluate
post-fire habitat, secondary fire effects (i.e., flooding and erosion), com-
prehensive severity ratings, and carbon emissions. Additionally, model
errors were inconsistent across pre-fire agents of change, demonstrat-
ing both the power of sampling bias to skew results and the limitations
of spectral indices designated for burn severity to maintain accuracy
when pre-fire agents of forest change such as bark beetles and timber
management are present. Finally, integrating spatial autocorrelation
into models improved accuracy, demonstrating that this approach
may be superior to attempts to use environmental data at mismatched
spatial scales for fire effects models. As LiDAR coverage increases spa-
tially and temporally, there will be opportunities to further explore re-
lationships between reflectance-based spectral indices and structural
measures of change derived from LiDARwith high confidence at a com-
mensurate scale.
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