Forest Reflectance and Transmittance FRT User Guide

Version 12.2012, 6 December 2012

A. Kuusk and T. Nilson

Contents

Abstract 3
1 Introduction 3
2 General layout of the model 3
3 Model components 4
3.1 Single scattering on tree crowns 4
3.2 Single scattering on ground vegetation 7
3.3 Diffuse fluxes 8
3.4 Leaf optics 10
3.5 Sky radiation 11
4 Transmittance of a forest canopy 11
5 Inversion of the model 12
6 Conclusion 12
References 14
Appendix 16
A General description of the computer code 16
B The usage 18
B. 1 The stand file 18
B. 2 A sample file of the second tree class 25
B. 3 The flow control file flow.dat 26
B. 4 Bark and trunk reflectance spectra 27
C A sample output file 27
D Description of the subroutines 31
D. 1 Subroutines of general use 31
D. 2 Structure modules 31
D. 3 Optics modules 32
D. 4 Reflectance of ground vegetation 33
D. 5 PROSPECT - the leaf optics model 33
D. 6 LIBERTY - the leaf optics model 33
D. 7 Atmosphere radiative transfer model 6 S 34
D. 8 Optimization modules 34
References 34

Abstract

A directional multispectral forest reflectance model has been developed in the group of vegetation remote sensing at Tartu Observatory, Estonia. The early version of the forest reflectance model by Nilson (1991) has been extensively modified. The modified leaf optics models PROSPECT by Jacquemoud et al. (1996) and LIBERTY by Dawson et al. (1998), atmosphere radiative transfer model 6 S by Vermote et al. $(1994,1997)$, and homogeneous two-layer canopy reflectance model ACRMf by Kuusk (2001) have been incorporated into the model. The model works in the spectral region $400-2400 \mathrm{~nm}$, the spectral resolution is 1 nm . Any Sun and view directions are allowed. The following manual presents the Fortran-code of the model.

1 Introduction

The transfer of solar radiation within forest stands is a rather complex process. We need models to understand how the reflected signal is formed and which are its most important driving factors. In addition, to create a satellite or aerial imagery-based forest management system, forest reflectance models capable of acting as an interface between the images and forestry databases are required. These models should be able to make maximum use of the forestry data contained in the database and allow to simulate the optical images, e.g. in terms of standwise ground-level reflectance factors. Originally, the forest reflectance model described by Nilson and Peterson (1991) has been derived just from these starting points. The previous version of the model needed several improvements. First of all, to make use of multiangular remote sensing data, the model should be modified into a multiangular version. Second, a multispectral version of the model is required to study the relations between leaf biochemical and high spectral resolution reflectance data. Several improvements were also needed to create a more user-friendly version of the model and to introduce some changes in the calculation algorithm. For these purposes, a considerable modification of the original model was undertaken.

2 General layout of the model

The forest reflectance model may be classified as a hybrid-type model, including the properties both geometrical and radiative transfer equation-based models. Tree crown envelopes are modeled as ellipsoids of rotation or cones in the upper and cylinders in the lower part (Fig. 1). Leaves and branches are uniformly distributed in the crown. Foliage orientation inside crowns is described by the two-parameter elliptical distribution of leaf normal inclination.

Several tree classes of different size and/or species are possible (Fig. 1). Within each class, trees are considered identical.

A homogeneous layer of vegetation is present on the ground surface.
The remote sensing signal from a forested scene is divided into three components: single scattering from overstorey (tree crowns and stems), single scattering from understorey vegetation, and diffuse fluxes of multiple sacttering and of sky radiation. The component fluxes are estimated with the help of geometrical and radiative transfer concepts. Special attention is paid to the adequate modeling of single scattering reflectance components, whereas reflectance caused by multiple scattering of radiation in the canopy is more roughly modeled.

The directional spectral reflectance of a forest stand in the given direction r_{2} is calculated as a sum of the single scattering reflectance $\rho_{I}\left(r_{1}, r_{2}\right)$ and diffuse reflectance $\rho_{D}\left(r_{2}\right)$,

$$
\begin{equation*}
\rho\left(r_{1}, r_{2}\right)=\frac{I_{\lambda}}{Q_{\lambda}} \rho_{I}\left(r_{1}, r_{2}\right)+\rho_{D}\left(r_{1}, r_{2}\right), \tag{1}
\end{equation*}
$$

where $I_{\lambda}=I_{\lambda}\left(\theta_{1}\right) \cos \left(\theta_{1}\right)$ is direct down-welling flux, and $Q_{\lambda}=I_{\lambda}+D_{\lambda}$ is the total downwelling flux, D_{λ} is diffuse downwelling flux, r_{1} and r_{2} are unit vectors in the Sun and view direction, respectively, θ_{1} is the Sun zenith angle.

The single scattering reflectance factor $\rho_{I}\left(r_{1}, r_{2}\right)$ accounts for the single scattering from treelayer foliage $\rho_{C R}^{1}\left(r_{1}, r_{2}\right)$ and single scattering from ground vegetation $\rho_{G R}^{1}\left(r_{1}, r_{2}\right)$,

$$
\begin{equation*}
\rho_{I}\left(r_{1}, r_{2}\right)=\rho_{C R}^{1}\left(r_{1}, r_{2}\right)+\rho_{G R}^{1}\left(r_{1}, r_{2}\right) . \tag{2}
\end{equation*}
$$

Diffuse reflectance $\rho_{D}\left(r_{1}, r_{2}\right)$ accounts both for the multiple scattering of radiation and for the diffuse radiance of scattered/reflected sky radiation D_{λ}.

The model works in the optical domain of radiation, $400-2400 \mathrm{~nm}$, spectral resolution is 1 nm .

3 Model components

3.1 Single scattering on tree crowns

The first-order reflectance component $\rho_{C R}^{1}\left(r_{1}, r_{2}\right)$ is calculated separately for all tree classes,

$$
\begin{array}{ll}
\rho_{C R}^{1}\left(r_{1}, r_{2}\right) & =\sum_{j=1}^{m} \rho_{C R j}^{1}, \\
\rho_{C R j}^{1} & =\lambda_{j} \iiint_{V_{j}} u_{j} \Gamma_{j}\left(r_{1}, r_{2}\right) p_{00 j}\left(x, y, z ; r_{1}, r_{2}\right) d x d y d z / \cos \theta_{1} \tag{3}
\end{array}
$$

Figure 1: Deriving the first-order scattering component.

Here λ_{j} is the number of trees of the j th class per unit ground area, $u_{j}=u_{j}(x, y, z)$ is the foliage area volume density within a tree crown, $\Gamma_{j}\left(r_{1}, r_{2}\right)$ is the scattering (area) phase function of the canopy medium, $p_{00 j}()$ is the bidirectional gap probability of two simultaneous free lines-of-sight in directions r_{1} and r_{2} from the point $M=(x, y, z)$ within a crown of the j th tree class (Fig. 1), V_{j} is the spatial region corresponding to the crown envelope. Integral (3) is calculated numerically.

Scattering phase function for a single foliage element is assumed to be bi-Lambertian with an additional specular reflectance component. On these assumptions, the scattering phase function $\Gamma_{j}\left(r_{1}, r_{2}\right)$ in formula (3) may be calculated by analytical formulas if foliage element reflection $\rho_{L j}$ and transmission $\tau_{L j}$ coefficients and leaf refractive index $n_{L j}$ are given, and leaf orientation is spherical or of fixed leaf angle (Nilson, 1991). For the arbitrary leaf angle distribution (LAD) the approximations by Kuusk (1995a) for elliptical LAD are used. Optical parameters are averaged over all foliage elements (leaves, branches) according to their share in the total foliage area.

The bidirectional gap probability $p_{00 j}$ is defined as a product of two independent probabilities

$$
\begin{equation*}
p_{00 j}=p_{1} p_{2} \tag{4}
\end{equation*}
$$

p_{1} being the within-crown level bidirectional gap probability and p_{2} that of the between-crown level. In calculations of the bidirectional gap probability p_{1}, results from (Kuusk, 1991) for the crown of a single tree are applied. The mutual shading of needles in shoots and the characteristic linear dimension of foliage elements $l_{s h}$ are accounted for.

The between-crown gap probability, p_{2}, in Eq. (4) stands for the parts of the lines-of-sight that lie outside the crown of interest, i.e. from the point $M_{1}\left(x_{1}, y_{1}, z_{1}\right)$ until the upper boundary of the forest canopy in the solar direction and from $M_{2}\left(x_{2}, y_{2}, z_{2}\right)$ in the view direction (Fig. 1). Based on (Nilson, 1977) it is calculated as follows:

$$
\begin{equation*}
p_{2}=a_{s}\left(z_{1}, \theta_{1}\right) a_{s}\left(z_{2}, \theta_{2}\right) C_{H S 2}\left(z_{1}, z_{2}, l_{12}, r_{1}, r_{2}\right) \tag{5}
\end{equation*}
$$

where $a_{s}(z, \theta)$ is the average proportion of gaps in the forest canopy at the height z in the direction θ, and $C_{H S 2}$ is the hot-spot correction factor for between-crown shading,

$$
\begin{equation*}
C_{H S 2}\left(z_{1}, z_{2}, l_{12}, r_{1}, r_{2}\right)=\exp \left[\sum_{j} \lambda_{j} c_{j} S_{c j}\left(z_{1}, z_{2}, l_{12}, r_{1}, r_{2}\right) p_{0 j}\right], \tag{6}
\end{equation*}
$$

$S_{c j}\left(z_{1}, z_{2}, l_{12}, r_{1}, r_{2}\right)$ is the area of the common part of the j th class crown envelope projections in solar and view directions, corresponding to the heights z_{1} and z_{2} and the horizontal distance $l_{12} ; p_{0 j}$ is the joint probability of gap occurrence within a single j th class tree crown when viewed simultaneously from a point at the height z_{1} in the solar direction r_{1} and from another point at the height z_{2} in the view direction r_{2}, horizontal distance of the points being l_{12}. The parameter c_{j} is introduced to account for the deviations in the tree distribution pattern from the Poisson distribution, see Eq. (14).

The gap probability $a_{s}(z, \theta)$ is calculated on the assumption of the binomial distribution of trees (Nilson, 1977),

$$
\begin{equation*}
a_{s}\left(z, \theta_{r}\right)=\exp \left\{-\sum_{j} \lambda_{j}\left[b_{1 j}\left(z, \theta_{r}\right) S_{\text {crown }, j}\left(z, \theta_{r}\right)+S_{\text {trunk }, j}\left(z, \theta_{r}\right)\right]\right\} \tag{7}
\end{equation*}
$$

where $b_{1 j}\left(z, \theta_{r}\right)=\ln \left[1-\left(1-a_{1 j}\left(z, \theta_{r}\right)\right)\left(1-c_{j}\right)\right] /\left(1-c_{j}\right), S_{\text {crown }, j}\left(z, \theta_{r}\right)$ is the area of crown envelope projection for class j at the level z, and $S_{\text {trunk,j }}\left(z, \theta_{r}\right)$ is the area of trunk projection for class j at the level $z, \quad a_{1, j}\left(z, \theta_{r}\right)$ is the gap probability in crowns of the tree class j in the direction θ_{r} at the level z, θ_{r} is the polar angle of the view vector $r_{i}, i=1,2$. The area of trunk projection $S_{\text {trunk }, j}\left(z, \theta_{r}\right)$ is calculated using trunk tapering curves by Ozolins (1988). The function $a_{1 j}\left(z, \theta_{r}\right)$ is shown in Eq. (8),

$$
\begin{equation*}
a_{1 j}\left(z, \theta_{r}\right)=\exp \left(-u_{j} G\left(\theta_{r}\right) \frac{V_{j}(z)}{S_{\text {crown }, j}\left(z, \theta_{r}\right) \cos \left(\theta_{r}\right)}\right), \tag{8}
\end{equation*}
$$

$V_{j}(z)$ is the volume of the tree crown above the level z in the tree class $j, G\left(\theta_{r}\right)$ is the RossNilson geometry function. In case of spherical leaf orientation $G\left(\theta_{r}\right)=1 / 2$. For the arbitrary LAD the approximations by Kuusk (1995a) for elliptical LAD are used. As the crown envelopes are supposed to be surfaces of revolution, the between-crown gap probability $a_{s}\left(z, \theta_{r}\right)$ does not depend on the azimuth. Grouping and/or regularity of the stand is described by a grouping parameter c_{j} in every tree class, $c_{j}<1, \quad c_{j}=1$, and $c_{j}>1$ correspond to a regular, random, and clumped pattern of trees in class j, respectively. As the stem coverage (basal area) is very small, unlike the crowns, the stem displacement pattern is supposed to be random.

In Eq. (7), the expression $\lambda_{j}\left[S_{\text {crown }, j}\left(z, \theta_{r}\right)+S_{\text {trunk }, j}\left(z, \theta_{r}\right)\right]$ stands for the mean coverage of ground by the shadows cast by crown envelopes and trunks from tree class j, if the direction of sunrays coincide with the view direction θ_{r}. It is the effective coverage that should appear in the exponent of Eq. (7). The mean coverage should be diminished, because the tree crowns are supposed to be semi-transparent, and modified to account for the tree distribution pattern effect. The two effects of single-crown transparency and of the tree distribution pattern on the between-crown canopy gap fraction are introduced by the parameter $b_{1 j}\left(z, \theta_{r}\right)$. Note that $b_{1 j}\left(z, \theta_{r}\right)=1-a_{1, j}\left(z, \theta_{r}\right)$, if $c_{j}=1$.

The overlapping of crown projections in Sun and view directions $S_{c j}()$, which is needed for the calculation of between-crown level bidirectional gap probabilities, is calculated so that the crown projections S_{1} and S_{2} in Sun and view directions, respectively, are substituted with circles of the same area. Centers of the circles are halfway between the projections of the base and the top of a crown, see Fig. 2. The estimated overlapping area S_{3} in Fig. 2 may be biased to some extent. Depending on the Sun and view angles, the relative azimuth between Sun and view directions, and the tree height and the crown size, both over- and underestimation of the overlapping area S_{3} are possible.

3.2 Single scattering on ground vegetation

A modification (ACRMf) of the two-layer homogeneous canopy reflectance model ACRM by Kuusk (2001) is applied for the calculation of the bidirectional reflectance of ground vegetation. Input parameters of the ACRMf are the leaf area index (LAI), leaf size, two leaf angle distribution parameters, two foliage clumping/regularity parameters, the set of biophysical parameters (PRSOPECT or LIBERTY parameters) for two layers of ground vegetation, and weights of Price's functions for the calculation of the soil reflectance spectrum. The probability of seeing sunlit ground vegetation is calculated as the p_{2} in Eq. (5) for the ground surface, $z_{1}=z_{2}=l_{12}=0$.

Figure 2: Calculation of the overlapping of crown projections.

3.3 Diffuse fluxes

Diffuse fluxes of multiple scattering and of diffuse sky radiation are considered in four flux approximation like in the SAIL model (Verhoef, 1984) and in the ACRM model (Kuusk, 2001). Four differential equations define four fluxes: vertical fluxes up E_{+}and down E_{-}, a direct solar flux E_{s}, and a flux associated with the radiance in the direction of observation E_{o},

$$
\begin{align*}
d E_{+} / d z & =-a u_{L} E_{+}+\sigma u_{L} E_{-}+s^{\prime} u_{L} E_{s} \\
d E_{-} / d z & =-\sigma u_{L} E_{+}+a u_{L} E_{-}-s u_{L} E_{s} \\
d E_{s} / d z & =k u_{L} E_{s} \tag{9}\\
d E_{o} / d z & =v u_{L} E_{-}+u u_{L} E_{+}-K u_{L} E_{o}
\end{align*}
$$

The SAIL coefficients $a, \sigma, s^{\prime}, s, k, v, u$, and K are expressed using the G-function and leaf reflection and transmission coefficients ρ_{L} and τ_{L}. Equations (9) can be solved analytically, the general solutions for E_{+}, E_{-}and E_{s} are given, e.g. in (Bunnik, 1978).

The diffuse component of reflectance ρ_{d} is a sum of two components, related to tree layer and to ground vegetation, $\rho_{d}^{\text {trees }}$ and ρ_{d}^{gr}, respectively,

$$
\begin{equation*}
\rho_{d}=\rho_{d}^{\mathrm{trees}}+\rho_{d}^{\mathrm{gr}}, \tag{10}
\end{equation*}
$$

Table 1: Scattering operators of the tree layer
Defintion Boundary conditions

$r_{d d}=E_{+}(0) / E_{-}(0)$	$E_{s}(0)=0$,	$E_{+}(-1)=0$,	$E_{-}(0)=D_{\lambda}$
$t_{d d}=E_{-}(-1) / E_{-}(0)$	$E_{s}(0)=0$,	$E_{+}(-1)=0$,	$E_{-}(0)=D_{\lambda}$
$r_{s d}=E_{+}(0) / E_{s}(0)$	$E_{s}(0)=I_{\lambda}$,	$E_{+}(-1)=0$,	$E_{-}(0)=0$
$t_{s d}=E_{-}(-1) / E_{s}(0)$	$E_{s}(0)=I_{\lambda}$,	$E_{+}(-1)=0$,	$E_{-}(0)=0$
$r_{d o}=E_{o}(0) / E_{-}(0)$	$E_{s}(0)=0$,	$E_{+}(-1)=0$,	$E_{-}(0)=D_{\lambda}$
$t_{d o}=E_{o}^{-}(-1) / E_{-}(0)$	$E_{s}(0)=0$,	$E_{+}(-1)=0$,	$E_{-}(0)=D_{\lambda}$,
$r_{s o}=E_{o}(0) / E_{s}(0)$	$E_{s}(0)=I_{\lambda}$,	$E_{+}(-1)=0$,	$E_{-}(0)=0$,
			$E_{o}(-1)=0$

where

$$
\begin{align*}
\rho_{d}^{\mathrm{trees}} & =\mathrm{SQ} r_{s o}+(1-\mathrm{SQ}) r_{d o}+ \\
& +\left[\mathrm{SQ}\left(p_{1} r_{s d}^{\mathrm{gr}}+t_{s d} r_{d d}^{\mathrm{gr}}\right)+(1-\mathrm{SQ}) t_{d d} r_{d d}^{\mathrm{gr}}\right] t_{d o} /\left(1-r_{d d} r_{d d}^{\mathrm{gr}}\right) \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\rho_{d}^{\mathrm{gr}}=\left[\mathrm{SQ}\left(p_{1} r_{s d}^{\mathrm{gr}} r_{d d}+t_{s d}\right)+(1-\mathrm{SQ}) t_{d d}\right] r_{d s}^{\mathrm{gr}} p_{2} /\left(1-r_{d d} r_{d d}^{\mathrm{gr}}\right) \tag{12}
\end{equation*}
$$

Here $\mathrm{SQ}=I_{\lambda} / Q_{\lambda}, p_{i}=p\left(r_{i}\right)$ is the gap probability in direction $r_{i}, r_{s d}^{\mathrm{gr}}, r_{d s}^{\mathrm{gr}}$ and $r_{d d}^{\mathrm{gr}}$ are the directional-hemispherical, hemispherical-directional, and hemispherical-hemispherical reflectance of ground vegetation, respectively. The ground vegetation reflectances $r_{s d}^{\mathrm{gr}}, r_{d s}^{\mathrm{gr}}$, and $r_{d d}^{\text {gr }}$ are calculated by integrating the ACRMf model over hemisphere by view, incident, and both directions, respectively.

The scattering operators of the tree layer $r_{s o}, r_{d o}, t_{d o}, t_{s d}$, and $t_{d d}$ are defined in Table 1 where $D_{\lambda}=Q_{\lambda}-I_{\lambda}$.

When calculating diffuse fluxes, the plant material is supposed to be distributed homogeneously in the horizontal, no layers, no trees, no branches, no shoots, and driving parameters are determined as averages approximating the behavior of the canopy in bulk. The effective foliage area index value $L A I_{e f f}$ is used in the calculations of diffuse fluxes. $L A I_{e f f}$ is calculated from the gap probability in a given direction, it depends on the G-function of foliage and on the tree distribution pattern (clumping/regularity). As the G-function is almost invariant realtive to leaf orientation at zenith angle 40° (Ross and Nilson, 1968), the effective LAI is calculated from the gap fraction at $\theta_{0}=40^{\circ}$,

$$
\begin{equation*}
L A I_{e f f}=\frac{\sum_{j}\left(\kappa_{c l, j} L A I_{j}+B A I_{j}\right)}{\Omega_{E}} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega_{E} & =\frac{\sum_{j}\left(\kappa_{c l, j} L A I_{j}+B A I_{j}\right)}{\cos \theta_{0} \sum_{j} \lambda_{j} S_{\text {crown }, j}\left(\theta_{0}\right) c_{j}\left(\theta_{0}\right)}, \\
c_{j}\left(\theta_{0}\right) & =\frac{\ln \left(1-\left(1-a_{1 j}\left(\theta_{0}\right)\right)\left(1-G I_{j}\right)\right)}{1-G I_{j}} . \tag{14}
\end{align*}
$$

Here $\kappa_{\text {clump }, j}$ is the clumping coefficient of leaves/needles in a shoot of the tree class $j, B A I_{j}$ is the branch area index, θ_{1} is the Sun zenith angle, and $a_{1 j}\left(\theta_{1}\right)$ is the gap probability in the Sun direction in crowns of the tree class $j, G I_{j}$ is the Fisher's grouping index - the relative variance of the number of trees in the area $S_{\text {crown }, j}(\theta)$. The effective value of the foliage area index $L A I_{\text {eff }}^{(\text {mult })}$ is calculated from the assumption that the gap fraction in the direction of sunrays as calculated by means of Eq. (7), and the modified exponential formula, as proposed in Chen and Cihlar (1996), should be equal. Thus, Ω_{E} could be interpreted as the 'clumping index caused by structures larger than a shoot'.

3.4 Leaf optics

Leaf optics models PROSPECT (Jacquemoud and Baret, 1990) or LIBERTY (Dawson et al., 1998) can be used for the calculation of leaf reflectance and transmittance. Both these models are modified so that the number of leaf constituents and names of files of their extinction spectra are listed in the input file. Extinction spectra of the models PROSPECT2 (Jacquemoud et al., 1996), PROSPECT3 (Fourty and Baret, 1998), and LIBERTY (Dawson et al., 1998) are available. The structure parameter of a single leaf in the PROSPECT model N is corrected to an effective value $N_{e f f}$ in order to account for the clumping of leaves/needles into a shoot,

$$
\begin{equation*}
N_{e f f}=N / \kappa_{c l} \tag{15}
\end{equation*}
$$

If compared with the PROSPECT model, the LIBERTY model has two additional parameters: average internal cell diameter and intercellular air space determinant (Dawson et al., 1998).

In the forest model input, the biochemical parameters are expressed as a fraction of the dry matter of leaves/needles. Using the described set of biophysical parameters, the whole spectrum of leaf reflectance and transmittance in the spectral range $400-2400 \mathrm{~nm}$ is calculated with the spectral resolution of 1 nm .

No good optical model for branch and trunk bark reflectance is available so far. Therefore, reflectance spectra of branch and trunk reflectance for every tree class are tabulated in separate input files.

3.5 Sky radiation

The wavelength-dependent relative share of direct and diffuse flux in incoming radiation is needed, Eq. (1). The atmospheric radiative transfer model 6S by Vermote et al. (1997) is involved for the calculation of incident radiation fluxes. Input parameters of the 6 S model, which are needed for the calculation of down-welling fluxes, are the percentage of four main aerosol components (dust-like, oceanic, water-soluble, and soot), and horizontal visibility or aerosol optical thickness at $550 \mathrm{~nm} \tau_{\text {aer }}^{550}$. The calculation of hemispherical-directional forest reflectance for sky radiation ρ_{D} is simplified. Instead of double integration over the hemisphere for incident directions, integration is performed in the perpendicular plane $\left(\varphi=90^{\circ}\right)$ only,

$$
\begin{equation*}
\rho_{D}\left(r_{2}\right)=\frac{\int_{2 \pi} d\left(r_{1}\right) \rho_{I}\left(r_{1}, r_{2}\right) \mu_{1} d r_{1}}{D_{\lambda}} \approx \frac{\int_{0}^{\pi / 2} d\left(\theta_{1}, \varphi=\pi / 2\right) \rho_{I}\left(\theta_{1}, \theta_{2}, \varphi=\pi / 2\right) \mu_{1} d \theta_{1}}{D_{\lambda}}, \tag{16}
\end{equation*}
$$

where $d\left(r_{1}\right)$ is the sky radiance in the direction $r_{1}=\left(\theta_{1}, \varphi_{1}\right), \mu_{1}=\cos \theta_{1}$, and $D_{\lambda}=\int_{2 \pi} d\left(r_{1}\right) \mu_{1} d r_{1}$ is the diffuse down-welling flux from the sky.

4 Transmittance of a forest canopy

The same algorithms can be used for the calculation of downward radiances and fluxes under a forest canopy. The relative downward radiance in direction r_{2} Sun being in direction r_{1} is presented as the sum of three components:

$$
\begin{equation*}
t\left(r_{1}, r_{2}\right)=t_{C R}^{1}\left(r_{1}, r_{2}\right)+t_{s k y}\left(r_{1}, r_{2}\right)+t_{C R}^{M}\left(r_{1}, r_{2}\right) \tag{17}
\end{equation*}
$$

Here the downward radiance $t\left(r_{1}, r_{2}\right)$ is normalized as reflectance in Eqs $(2,1), t_{C R}^{1}\left(r_{1}, r_{2}\right)$ is the radiance of single scattering from tree crowns, $t_{s k y}\left(r_{1}, r_{2}\right)$ is the sky radiance, and $t_{C R}^{M}\left(r_{1}, r_{2}\right)$ is the radiance of multiple scattering on crowns. In the model the sky radiance $t_{s k y}()$ depends only on the Sun zenith angle θ_{1}.

Total transmittance of the tree layer $t_{Q}\left(r_{1}, r_{2}\right)$ is calculated as a ratio of the downward flux below the tree canopy to the incoming total flux Q_{λ},

$$
\begin{equation*}
t_{Q}\left(r_{1}\right)=\frac{I}{Q_{\lambda}}\left(t_{C R}^{I}\left(r_{1}\right)+a_{s}\left(0, \theta_{1}\right)\right)+\frac{D_{\lambda}}{Q_{\lambda}} \int_{2 \pi}\left(a_{s}\left(0, r_{2}\right)+t_{C R}^{I}\left(r_{2}\right)\right) \cos \left(\theta_{2}\right) d r_{2} \tag{18}
\end{equation*}
$$

and diffuse transmittance of the tree layer $t_{D}\left(r_{1}\right)$ is calculated as a ratio of the downward flux below the canopy (direct sunrays screened) to the incoming diffuse flux D_{λ},

$$
\begin{equation*}
t_{D}\left(r_{1}\right)=\int_{2 \pi}\left(a_{s}\left(0, r_{2}\right) \cos \left(\theta_{2}\right)+t_{C R}^{I}\left(r_{2}\right)\right) \cos \left(\theta_{2}\right) d r_{2}+\frac{I_{\lambda}}{D_{\lambda}} t_{C R}^{I}\left(r_{1}\right) \tag{19}
\end{equation*}
$$

Here $t_{C R}^{I}(r)$ is the scattering operator $I_{\lambda}(r) \rightarrow$ (downward scattered flux) for tree crowns.
As the approximation equations for the area scattering phase function $\Gamma_{j}\left(r_{1}, r_{2}\right)$ are not validated for the lower hemisphere, the downward scattered fluxes are calculated only for the spherical LAD.

5 Inversion of the model

Inversion of the model can be performed similar to Goel and Strebel (1983) or Kuusk (1991): a merit function is built, which has its minimum value when the best fit of measured and calculated reflectance data is reached. This way the complicated task of the solution of an array of non-linear equations for the estimation of model parameters is reduced to a more simple problem of the search of an extremum of a multidimensional function. In the merit function constraints are used in order to avoid the non-physical values of input parameters, and uncertainties of reflectance data and an expert estimate of parameter values are accounted for,

$$
\begin{equation*}
F(X)=\sum_{j=1}^{m}\left(\frac{\rho_{j}^{*}-\rho_{j}}{\epsilon_{j}}\right)^{2}+\sum_{i=1}^{n}\left[\left(x_{i}-x_{i, b}\right)^{4} w_{i}^{2}+\left(\frac{x_{i}-x_{e, i}}{d x_{i}}\right)^{2}\right] \tag{20}
\end{equation*}
$$

Here $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the vector of model input parameters, m is the number of the measured reflectance values $\rho_{j}^{*}, \quad \rho_{j}$ is the model reflectance value, ϵ_{j} is the error of the measured reflectance value $\rho_{j}^{*}, \quad x_{i}$ is a model parameter and $x_{i, b}$ its value on the boundary of the given region; w_{i} is a weight, $w_{i}=0$ in the given region $x_{i} \in\left[x_{i, \min }, x_{i, \max }\right]$ and $w_{i}=$ const else, $x_{e, i}$ is the expert estimate of the parameter x_{i}, and $d x_{i}$ is a tolerance for the parameter x_{i} which controls the sensitivity of the merit function on the expert estimate.

There is an option $(\mathrm{ijob}=5)$ to use only absolute differences $\left(\rho_{j}^{*}-\rho_{j}\right)^{2}$ in the merit function. In the inversion, the redundancy of data can be effectively used, i.e. the number of reflectance values inverted may be more than the number of model parameters subject to estimation. Anyway, as the number of model parameters is large, most of the model parameters should be fixed at 'best guess' values, and only a few parameters can be estimated simultaneously. Only the parameters of the first tree class can be estimated in the inversion.

6 Conclusion

The model can be used for the interpretation of multispectral and/or multiangular remote sensing data in the wide range of Sun and view angles in the whole optical domain 400-2400 nm. The proposed version of the model seems to be a good tool for different sensitivity analyses, e.g.
an analysis of the dependence of BRDF, in particular near the hot spot, on the stand structural variables at different structural levels and on optical parameters of the canopy and understorey can be made.

The same computer code can be used both for direct and inversion modeling.
The model is coded in Fortran. The computational aspects of the model are detailed in the following appendices:

- General description of the computer code
- Example of inputs and outputs
- Complete description of the subroutines

Acknowledgements

The first version of the model was coded by Mrs. Anne Jõeveer. The Fortran text of the PROSPECT model was provided by Dr. S. Jacquemoud, the C text of the LIBERTY model was provided by Dr. T. Dawson, and the source text of the 6 S model by Dr. E. Vermote. Absorption spectra for the PROSPECT model were provided by Dr. F. Baret.

References

Bunnik, N.J.J., 1978. The Multispectral Reflectance of Shortwave Radiation by Agricultural Crops in Relation with their Morphological and Optical Properties, Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, 175 pp .

Chen, J.M. and Cihlar, J., 1996. Retrieving leaf area index of boreal conifer forests using Landsat TM images, Remote Sens. Environ., 55(2):153-162.

Dawson, T.P., Curran, P.J., and Plummer, S.E., 1998. LIBERTY - modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens. Environ. 65:50-60.

Fourty, T. and Baret, F., 1998. On spectral estimates of fresh leaf biochemistry. Int. J. Remote Sens. 19:1283-1297.

Goel, N.S. and Strebel, D.E., 1983. Inversion of vegetation canopy reflectance models for estimating agronomic variables. I. Problem definition and initial results using the Suits model. Remote Sens. Environ. 13:487-507.

Jacquemoud, S., and Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 34:75-91.

Jacquemoud, S, Ustin, S.L, Verdebout, J, Schmuck, G, Andreoli, G, and Hosgood, B., 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 56:194-202.

Kimes, D.S., Knyazikhin, Y., Privette, J.L., Abuelgasim, A.A., and Gao, F., 2000. Inversion methods for physically-based models. Remote Sens. Reviews, 18(2-4):381-439.

Kuusk, A., 1991. The hot spot effect in plant canopy reflectance. In: Myneni RB, Ross J, editors. Photon-vegetation interactions. Applications in optical remote sensing and plant ecology. Berlin: Springer, 139-159.

Kuusk, A., 1994. A multispectral canopy reflectance model. Remote Sens. Environ. 50:75-82.
Kuusk, A., 1995a. A fast, invertible canopy reflectance model, Remote Sens. Environ. 51(3): 342-350.

Kuusk, A., 2001. A two-layer canopy reflectance model, J.Q.S.R.T., 71:1-9.
Kuusk, A., 1995b. A Markov chain model of canopy reflectance. Agricult. Forest Meteorol. 76:221-236.

Kuusk, A. and Nilson, T., 2000. A directional multispectral forest reflectance model. Remote Sens. Environ. 72(2):244-252.

Nilson T., 1977. A theory of radiation penetration into nonhomogeneous plant canopies. The Penetration of Solar Radiation into Plant Canopies, Acad. Sci. ESSR Report, Tartu, pp. 570. (Russian)

Nilson T., 1991a. Approximate analytical methods for calculating the reflection functions of leaf canopies in remote sensing applications. In: Myneni RB, Ross J, editors. Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Berlin, Springer, 161-190.

Nilson T., and Peterson U., 1991b. A forest canopy reflectance model and a test case. Remote Sens. Environ. 37(2):131-142.

Ozolins, 1988: Standards for Forest Taxation in Latvia. Latvian Ministry of Forest Production and Management, Riga, 174 pp. (in Russian).

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1992. Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge, 963 pp.

Ross, J., 1981. The Radiation Regime and Architecture of Plant Stands. Dr. W.Junk Publishers, The Hague, 391 pp.

Ross, J. and Nilson, T., 1968. The calculation of photosynthetically active radiation in plant communities. In: Regime of the Solar Radiation in a Vegetation Canopy, Inst. Phys. and Astronomy, Acd. Sci. Est. SSR, 5-54.

Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens. Environ. 16:125-141.

Vermote, E., Tanré, D., Deuzé, J.L., Herman, M., and Morcrette, J.J., 1994. Second Simulation of the Satellite Signal in the Solar Spectrum (6S). User Guide Version 0, GSFC, NASA, 183 pp.

Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997. Second simulation of the satellite signal in the solar spectrum, 6S - An overview. IEEE Trans. Geosci. Remote Sens. 35(3):675-686.

Appendix

A General description of the computer code

A rough flowchart of the computer code is in Fig. 1, and the full call-tree in Fig. 2.

FRT, direct mode, $\mathrm{ijob}=0,1,2,3$

- read input data
- print input data
- output results

Figure 1: Flowchart of the computer code.

Figure 2: The call-tree of the computer code.

B The usage

The model is distributed as a compressed tar-archive of source texts, sample input and output files. It is recommended to create a separate directory for the model. Move the archive frt??????.tar.gz to this directory, extract the files and make
tar -xzvf frt??????.tar.gz
make frt12 or make all
make clean removes object files, make distclean removes object files and executables.
If you don't use the gfortran compiler then you should modify the makefile.
To run the code type on the commandline
./frt12 inputfile outputfile
If you do not give input and output files on commandline then you will be asked for the filenames.

Program frt calculates in direct mode forest reflectance and transmittance. There are options to perform calculations in various modes:

- a single run for given Sun and view angles and fixed wavelength
- reflectance spectrum for given view and Sun angles in the given range of wavelengths or for a list of spectral bands
- angular distribution of spectral reflectance at given wavelength and given azimuth (relative to the Sun azimuth) for a given Sun zenith angle in the range of view polar angles 0 .. 80°

Any view and Sun angle is allowed, however, do not use polar angles very close to 90°.
There are several input files required: a file of stand parameters (the stand file), the files of tree parameters for the second, third etc tree classes, files of absorption spectra for the leaf optics model, and files of bark and trunc reflectance spectra.

The same code is used for the inversion: parameters of the first tree class and/or ground vegetation can be estimated. An additional flow control file flow.dat is requierd for the model inversion.

B. 1 The stand file

The same stand file can be used both for the direct and inverse modes, however, in the direct mode some input parameters may be missing. The files of the second and other tree classes have the same structure as the stand file for the direct mode, the redundant data may be missing, in case they are present they are not used.
The input parameter $i j o b$ controls which task will be run:

1 calculate spectrum, Sun and view angles fixed
2 calculate angular distribution for theta $=-80 . .80^{\circ}$, Sun zenith, azimuth and wavelength fixed
3 n_sun Sun zenith angles, view angles and wavelength fixed
4 inversion of the model, the initial guess, the recommended range of parameters, and errors of the reflectance values are accounted for in the merit function
5 inversion of the model, absolute differences in the merit function

ijob $=1$

The spectral range is determined by the wavelenght of the first spectral band, the wavelenght increment $d w l$, and the number of spectral bands. The valid range of wavelengths is 400-2400 nm , spectral resolution 1 nm . The spectrum step is given by an input parameter $d w l$, if $d w l \leq 0$ then the list of wavelengths should be given.
ijob $=2$
Program calculates the angular distribution of forest reflectance and transmittance in the range $-80 . .80^{\circ}$ at a given azimuth (relative to the principal plane) and given increment in the view nadir angle. Negative polar angles correspond to the backscattering (hot-spot side), and positive polar angles - to the forward scattering.
ijob $=3$
Program calculates the forest reflectance at the given view direction for $n _$sun Sun zenith angles.

ijob $=4$

The code is run in inverse mode, n parameters of the first tree class which are listed in the key vector $l l(n)$ are estimated by minimizing the merit function $F(X)$, Eq. (20).
ijob $=5$
As $i j o b=4$, except absolute differences are accounted for in the merit function $F(X)$, i.e. $\epsilon=1$ in Eq. (20).

Structure of the stand file

A sample stand file is printed in the page 20. Colons are used to mark comments, information after a colon is not used by the computer program. Below the sample stand file is commented linewise. The row of the input file is printed in bold. As the number of lines is not constant - it depends on the number of leaf components - the lines in comments are not numbered.

A sample stand file

'Järvselja Pine'	: data set name
124	: stand age
2	: \# of size classes
*** files of refractive index and other tree classes $* * *$	

*** files of refractive index and other tree classes $* * *$
'refrind.dat' 'bepe'

x0	xmi	xmax	dx		i
'pine'				: species	
t_ell				: crown form	
. 115	. 01	. 16	. 02	: stand density, m^{-2}	1
15.9	10.	25.	5.	: tree height, m	2
4.2	. 5	10.	9.	: crown l, m; ell \| con	3
0.	. 5	10.	1.	: cylinder	4
1.5	. 2	5.	. 3	: crown radius, m	5
18.	2.	25.	5.	: trunk diameter, cm	6
2.67	. 1	8.	8.	: m - total dry leaf weight, $\mathrm{kg} /$ tree	7
160.	30.	180.	60.	: SLW - leaf weight per area, g m-2	8
0.0	0.	4.5	. 5	$: \mathrm{eln} 3--\ln (1-\mathrm{eps})$	9
53.57	0.	90.	20.	: thm3 - modal leaf angle	10
. 1	. 05	. 6	. 2	: shoot length, m	11
. 31	. 01	1.	. 05	: BAI/LAI	12
1.69	. 6	2.8	. 05	: tree distr. param. $G I_{j}$	13
. 6	. 5	. 8	. 2	: shoot shading coef	14
${ }_{4}$ 'prospect'				: leaf optics model	
				: \# of leaf components	
240.	50.	320.	50.	'waterb.dat' : c1, \% of SLW, comp. 1	15
. 554	. 3	1.	. 2	'chlorp3.dat' : c2, \% of SLW, comp. 2	16
97.11	94.	99.8	20.	'drymatter.dat' : c3, \% of SLW, comp. 3	17
18.9	0.	20.	20.	'base.dat' : c4, \% of SLW, comp. 4	18
1.602	1.6	2.8	. 5	: leaf str. param. - PROSPECT N	27
. 9	. 6	1.2	. 2	: refr. ind. ratio	28
,'pine_branch_1.dat'				: file of branch reflectance	

'pinetr1.dat'

.208	.01	6.	.3
.15	.02	.4	.05
1.0	0.4	1.0	.05
1.2	1.0	2.	.2
3.	.0	4.5	.5
53.57	0.	90.	20.
.95	.6	1.3	.2
81.7	80.	180.	30.

'prospect'		
4		
140.	130.	320.
.4	.3	.8
99.6	94.	99.8
.1	.0002	4.
1.315	1.	2.5
1.06	.01	1.5
.15	.02	.4
1.	.4	1.
3.	.0	4.5
75.	0.	90.
1.2	.6	1.3
78.54	70.	120.
'prospect'		
4		
134.	130.	320.
.4	.3	.8
99.6	94.	99.8
.2	.0002	4.
1.005	1.	2.5

lambda reflectance delta_rho

'Järvselja Pine'	: data set name
$\mathbf{1 2 4}$: stand age
$\mathbf{2}$: \# of size classes

The number of tree classes, the max number of tree classes is 10 .
*** files of refractive index and other tree classes *** - a comment line
'refrind.dat' 'bepe'
This line cannot be omitted in the case of one tree class.
$\mathbf{x 0} \quad \mathbf{x m i n} \quad \mathbf{x m a x} \quad \mathbf{d x} \quad \mathbf{i}$ - a comment
'pine' : tree species, a character string for information purposes only
t_ell : tree species, a character string for information purpo
$:$ crown form,
A logical parameter of crown shape: t - ellipsoid, f - cylinder+cone

Starting from the next row there are four parameter values in each line. Only the first value $(x 0)$ is required for the direct problem, $x _\min$ and $x _\max$ are the boundary values of the parameter in the inversion run. The fourth column, $d x$, is the tolerance of the parameter in the inversion, Eq. (20). The first value ($x 0$) serves as an initial guess and as an expert estimate $x_{e, j}$, Eq. (20) of the parameter value in the inversion. There is the parameter number in the vector of parameters in the last column. Only the first column ($x 0$) is needed in the direct mode $(i j o b=0,1,2,3$)
. 01 . $16 \quad .02 \quad$: stand density, m^{-2}
Number of trees for the given tree class
15.9
10.
25.
5. : tree height, m
4.2
10.
9. : crown l, m; ell |con Crown length (ellipsoid) or length of the conical part of the crown (cylinder+cone)

0.	. 5	10.	1.	cylinder
	Length of the cylindrical part of crown			
1.5	. 2	5.	. 3	: crown radius, m
	Crown radius - the horizontal semiaxis of ellipsoid or the base radius of the cone			
18.	2.	25.	5.	: trunk diameter, cm
	$D B H$ - trunk diameter at the breast height.			
2.67	. 1	8.	8.	: m - total dry leaf weight, $\mathrm{kg} /$ /ree
160.	30.	180.	60.	: SLW - leaf weight per area, g m-2
0.0	0.	4.5	. 5	: eln3--ln(1-eps)
53.57	0.	90.	20.	: thm3-modal leaf angle
. 1	. 05	. 6	. 2	: shoot length, m
. 31	. 01	1.	. 05	: BAI/LAI
1.69	. 6	2.8	. 05	: tree distr. param. $G I_{j}$

Grouping index, $G I_{j}=1$ - a random stand, $G I_{j}<1$ - a clumped stand, $G I_{j}>1$ - a regular stand.
. 6
. 5
. 8
. 2
: shoot shading coef

Shoot shading parameter κ, accounts for the decrease of effective LAI due the mutual shading of leaves (needles), $\kappa=1$ - no mutual shading.
'prospect' : leaf optics model, options are 'prospect' and 'liberty'.
4 : \# of leaf components $n_{\text {comp }}$
In the next $n_{\text {comp }}$ lines the percent concentration of the component and the file name of the component absorption spectrum for every component are listed. Despite in the direct mode only the first parameter $x(0)$ is used, the filename must be at the fifth position in the line. The components $15-24$ of the vector of parameters are reserved for the leaf biochemical constituents - the tree layer, components 37-46 the upper layer of ground vegetation, and components 57-66 - the lower layer of ground vegetation, so the maximum number of leaf biochemical components is 10 . The components 25 and 26, 47 and 48, and 67 and 68 of the vector of parameters are the LIBERTY parameters cell diameter and amount of inter-cell air, for the tree layer, the upper and lower layer of ground vegetation, respectively.

240.	50.	320.		'waterb.dat'	c1, \% of SLW, model component 1
. 554	. 3	1.		'chlorp3.dat'	: c2, \% of SLW, model component 2
97.11	94.	99.8		'drymatter.dat'	: c3, \% of SLW, model component 3
18.9	0.	20.		'base.dat'	: c4, \% of SLW, model component 4
1.602	1.6	2.8	. 5	: leaf str	am. - PROSPECT N
. 9	. 6	1.2	. 2	refr. in	

Refraction index of the leaf surface wax is calculated from the tabulated value by multiplying to this coefficient.

```
'pine_branch_1.dat' : file of branch reflectance
'pinetr1.dat' : file of trunk reflectance
```

The next group of parameters are the input parmeters of the two-layer CR model (Kuusk, 2001).

**** Ground vegetation ***			- a comment	
. 208	. 01	6.	3.	: LAI2_ground, upper layer
. 15	. 02	. 4	. 05	: s12 HS-parameter
1.	0.4	1.0	. 05	: clmp2 - foliage clumping parameter
1.2	1.0	2.	. 2	: szz - the displacement parameter
3.	. 0	4.5	. 5	: eln2--ln(1-eps)
53.57	0.	90.	20.	: thm2-modal leaf angle
. 95	. 6	1.3	. 2	: n_ratio2
81.7	80.	180.	30.	: SLW2 $\left(\mathrm{g} / \mathrm{m}^{2}\right.$)
'prospect'				: leaf optics model, upper layer
4				: \# of leaf components
140.	130.	320.	50.	'waterb.dat' : c1, \% of SLW, component 1
. 4	. 3	. 8	. 2	'chlorp3.dat' : c2, \% of SLW, component 2
99.6	94.	99.8	20.	'drymatter.dat' : c3, \% of SLW, component 3
. 1	. 0002	4.	. 1	'brownpigm.dat' : c4, \% of SLW, component 4
1.315	1.	2.5	. 2	: N2 (PROSPECT)
1.06	. 01	1.5	. 3	: LAI1_ground, lower layer
. 15	. 02	. 4	. 05	: sl1-HS-parameter
1.	. 4	1.	. 2	: clmp1-foliage clumping parameter
3.	. 0	4.5	. 5	: eln $1--\ln (1-\mathrm{eps})$
75.	0.	90.	20.	: thm1-modal leaf angle
1.2	. 6	1.3	. 2	: n_ratiol
78.54	70.	120.	30.	: SLW1 $\left(\mathrm{g} / \mathrm{m}^{2}\right.$)
'prospect'				: leaf optics model, lower layer
4				: \# of leaf components
134.	130.	320.	50.	'waterb.dat' : c1, \% of SLW, component 1
. 4	. 3	. 8	. 2	'chlorp3.dat' : c2, \% of SLW, component 2
99.6	94.	99.8	20.	'drymatter.dat' : c3, \% of SLW, component 3
. 2	. 0002	4.	. 1	'brownpigm.dat' : c4, \% of SLW, component 4
1.005	1.	2.5	. 2	: N1 (PROSPECT)
'price.dat'		45.		: file of Price' vectors, th*
. 217	. 05	. 4	. 07	: s1-soil parameters
-. 05	-. 1	. 1	. 02	: s2
. 0	-. 05	. 05	. 02	: s3
. 0	-. 04	. 04	. 02	: s4

The next group of parameters are the input parmeters of the 6 S model (Vermote et al., 1997).

$c(2)-$	water-soluble
$c(3)-$	oceanic
$c(4)-$	soot

0. . $080 \quad$: visibility $v, \mathrm{~km}$, and/or tau_aerosol(550 nm) if $v \leq 0$
$1: *^{\mathrm{ijob}} *: 0$-single, 1 -spectrum, 2-ad, 3-n_sun, 4,5-inversion (4-relat., 5-abs. differences)
The job control parameter $i j o b$
0 - calculate a single value of canopy reflectance
1 - calculate reflectance spectrum for the given Sun and view angles
2 - calculate reflectance angular distribution at given azimuth
3 - calculate CR for several Sun zenith angles
4 - inversion of the FRT model, relative differencies in the merit function
5 - inversion of the FRT model, absolute differencies in the merit function

2 -5. : \# of Sun angles, spectral bands, spectrum step
Number of Sun angles and spectral bands; the spectrum step $d \lambda$. If $d \lambda<0$ then give the list of spectral bands on the next line otherway, the spectrum has the fixed increment of wavelength and only the first wavelength is read
20. 50.
571.
650.
: Sun zeniths : spectral bands
486.

2.

0.
1.

The azimuth angle is counted from the principal plane.
The next group of parameters are optimization parameters. The only working option for the optimization subroutine is 'powell'.

'powell'

5000
1100
nfmax - the max number of calculations of merit function
itmax - the max number of iterations
itbr - the max number of iterations in the subroutine brent nbrak - number of iterations in the subroutine mnbracket
1.E-9 1.E-7 1.E-13 1.E-8 : zeps, tolbr, tiny, ftolp
1.

2
.5
10. f
n - the number of model parameters subject to inversion
at - penalty - the weight w_{i}, Eq. (20), at $=10$. is ok!
$l i g$ is a logical parameter,
$l i g=\mathrm{t}$ (.true.) - parameters will be read from a temporary file (results of the previous iteration)
$l i g=\mathrm{f}(. f a l s e)-$. parameters will be read from the input file
In the first run take $l i g=\mathrm{f}$ (.false.)
11
14 : 11(i)

The key vector $l l(n)$, here the numbers of free model parameters which are subject to estimation are listed.

The next lines are the reflectance values for inversion: for the first Sun zenith for every spectral band, for the second Sun zenith for every spectral band etc. The number of reflectance/transmittance values should be $n _$chnl $* n _$sun.

486.	$\mathbf{. 0 2 7 1}$	$\mathbf{. 0 2}$: th_Sun=37.6
572.	$\mathbf{. 2 7 4 4}$	$\mathbf{. 1}$: th_Sun=37.6
661.	$\mathbf{. 2 8 0 6}$	$\mathbf{. 1}$: th_Sun=37.6
838.	$\mathbf{. 0 2 2 8}$	$\mathbf{. 0 2}$: th_Sun=50.
1677.	$\mathbf{. 2 7 0 2}$	$\mathbf{. 1}$: th_Sun=50.
$\mathbf{2 2 1 7 .}$	$\mathbf{. 2 7 6 5}$	$\mathbf{. 1}$: th_Sun=50.

B. 2 A sample file of the second tree class

'Järvselja Pine'
124
2
** files of refractive index and other tree classes:
'refrind.dat' 'bepe'
x0
'birch'
t_ell
.0006
4.1
2.9
0.
0.8
5.5
0.598
76.
0.0
53.57
. 2
. 1505
1.69
. 95
'prospect'
4

76.6	50.	320.	50.

.7375	.3	1.

$99.9 \quad 94 . \quad 99.9$
$\begin{array}{lll}17.36 & 0 . & 20.8\end{array}$
1.548
. 9
. 4
'birch_branch_1.dat'
'birchtr1.dat'
: data set name
: stand age
: \# of size classes

\square
: species
: crown form
: stand density, m^{-2}
: tree height, m
: crown $1, \mathrm{~m}$; ell | con
: cylinder
: crown radius, m
: trunk diameter, cm
: m - total leaf weight, $\mathrm{kg} /$ /tree
: SLW - leaf weight per area, g m-2
: eln3--ln(1-eps)
: thm3 - modal leaf angle
: shoot length, m
: BAI/LAI
: tree distr. param, the Fisher's grouping index $G I_{j}$
: shoot shading coef
: leaf optics model
: \# of leaf components
'waterb.dat' : c1, \% of SLW, component 1
'chlorp3.dat' : c2, \% of SLW, component 2
'drymatter.dat' : c3, \% of SLW, component 3
'base.dat' : c4, \% of SLW, component 4
: leaf str. param.
: refr. ind. ratio
: shoot length, m
: file of branch reflectance
: file of trunk reflectance

B. 3 The flow control file flow.dat

The inverion procedure is iterative. If in given number of iterations the minimum of the merit function is found, ier $=1$, then the program prints output and stops. Otherway ($i e r \neq 1$), the flow control parameter next is read from the flow control file flow.dat. The meaning of this parameter is:

1 - continue
2 - read parameters nfmax, itmax, itbr, nbrak, new values of these parameters should be on the next line
3 - read parameters zeps, tolbr, tiny, ftol, alpha, beta, gamma, dx, new values of these parameters should be on the next line
$4-\operatorname{read}$ parameters $n, l l(i, i=1,2, . ., n)$
5 - read new initial guess $x 0$
6 - read new $x \min , x \max$, there should be new values $x \min (1), x \max (1), x \min (2), x \max (2), \ldots, x \min (19), x \max (19)$ on the next line
7 - stop

A sample file flow.dat

1 : continue
1 : continue
1 : continue
7 : stop

B. 4 Bark and trunk reflectance spectra

The files of bark and trunk reflectance spectra are simple two-column files of 2001 rows, where the first column is wavelength, nm , and the second column is reflectance. The wavelength interval is 1 nm .

C A sample output file

```
#
# Forest Reflectance Model V.11.2012
by A. Kuusk, T. Nilson
Input parameters:
        Stand Age = 124 Järvselja Pine
## ijob = 1
Sun zenith = 44.0 View zenith = 0.0 View azimuth = 3.0
            1 6 ~ s p e c t r a l ~ b a n d s
        Files of parameters of other tree classes:
        bepe
            ellips ellips
    stand density, m-2 0.1115 0.0006
    tree height, m 15.900 4.100
    ellipsoid or cone 4.200 2.900
    cylinder, m 0.000 0.000
    crown radius, m 1.500 0.800
    trunk diameter, cm 18.000 5.500
    total leaf weight 2.670 0.598
    leaf weight, g m-2 160.000 76.000
    eln 0.000 0.000
    thm 53.570 53.570
    shoot size, m 0.100 0.200
        BAI/LAI 0.312 0.150
        tree distr. param. 1.690 1.690
        shoot shading par. 0.600 0.950
        Leaf models: prospect prospect
        # of leaf componen 4 4
        waterb.dat waterb.dat
        c1, % of SLW 240.00 76.60
        chlorp3.dat chlorp3.dat
        c2, % of SLW 0.55 0.74
        drymatter.dat drymatter.dat
    c3, % of SLW 97.11 99.90
        base.dat base.dat
```

```
    c4, % of SLW 18.91 7.36
    leaf str.par 1.6016 1.5480
    refr. ind. ratio 0.9000 0.9000
    bark refl. files: pine_branch_1.dat birch_branch_1.dat
    trunk refl. files pinetr1.dat birctr1.dat
*** Ground vegetation, upper layer
    ground LAI 0.21
    leaf size 0.15
    clmp 1.00
    szz 1.20
    eln 3.99
    thm 53.57
    n_ratio 0.99
    SLW 81.70
    Leaf model: prospect
    # of leaf components: 4
        waterb.dat
    c1, % of SLW 139.08
        chlorp3.dat
    c2, % of SLW 0.36
        drymatter.dat
    c3, % of SLW 99.52
        brownpigm.dat
    c4, % of SLW 0.10
    leaf str.par 1.3150
*** Ground vegetation, lower layer
    ground LAI 1.06
    leaf size 0.15
    clmp 1.00
    eln 3.00
    thm 75.47
    n_ratio 1.22
    SLW 78.54
    Leaf model: prospect
    # of leaf components: 5
        waterb.dat
    c1, % of SLW 134.24
        chlorp3.dat
    c2, % of SLW 0.42
        anthocyanins.dat
    c3, % of SLW 0.73
        drymatter.dat
    c4, % of SLW 98.34
        cellp3.dat
    c5, % of SLW 0.50
    leaf str.par 1.0053
    s1_soil 2.0373
    s2 0.0000
    s3 0.0000
    s4 0.0000
6S parameters
            aerosols type identity : user defined aerosols model *
                0.800 % of dust-like
                0.170 % of water-soluble *
                        0.000 % of oceanic *
                        0.030 % of soot *
                    optical condition identity : *
        visibility 21.51 km opt. thick. 550nm 0.2380 *
                ground pressure [mb] 1013.00
                        1
                            2
```



```
    # of leaf components:
        waterb.dat
    c1, % of SLW 134.24
        chlorp3.dat
    c2, % of SLW 0.42
        anthocyanins.dat
    c3, % of SLW 0.73
        drymatter.dat
    c4, % of SLW 98.34
        cellp3.dat
    c5, % of SLW 0.50
    leaf str.par 1.0053
    s1_soil 2.0373
    s2 0.0000
    s3 0.0000
    s4 0.0000
    Järvselja Pine
    Sun zenith = 44.0 View zenith = 0.0 View azimuth = 3.0
        1 6 ~ s p e c t r a l ~ b a n d s
wl,nm refl. b_down r_ground S'/Q rcr1 rgr1 rdif
489.1 0.2046E-1 0.1623 0.390E-1 0.710 0.937E-2 0.488E-2 0.620E-2
528.6 0.3926E-1 0.1589 0.664E-1 0.745 0.193E-1 0.831E-2 0.116E-1
549.7 0.4513E-1 0.1547 0.760E-1 0.763 0.225E-1 0.961E-2 0.129E-1
568.2 0.4264E-1 0.1453 0.736E-1 0.776 0.215E-1 0.944E-2 0.116E-1
629.1 0.3821E-1 0.1245 0.674E-1 0.809 0.202E-1 0.892E-2 0.901E-2
658.6 0.3491E-1 0.1158 0.638E-1 0.822 0.187E-1 0.858E-2 0.757E-2
671.9 0.3432E-1 0.1126 0.635E-1 0.828
694.5 0.4764E-1 0.1179 0.841E-1 0.836 0.256E-1 0.112E-1 0.107E-1
703.4 0.7055E-1 0.1328 0.125 0.839 0.359E-1 0.165E-1 0.180E-1
709.5 0.9194E-1 0.1496 0.154 0.842 0.456E-1 0.201E-1 0.261E-1
738.5 0.1894 0.2296 0.266 0. 0.852 0.792E-1 0.336E-1 0.766E-1
748.6 0.2108 0.2459 0.286 0.855 0.849E-1 0.360E-1 0.898E-1
777.2 0.2298 0.2554 0.308 0.064 0.898E-1 
```



```
890.8 0.2635 0.2605 0.362 0.888 0.967E-1 0.463E-1 0.120
905.1 0.2670 0.2605 0.369 0.891 0.973E-1 0.472E-1 0.122
```

wl,nm - wavelength
refl. - directional reflectance factor
b_down - downward radiance relative to the sky radiance at zenith
$\mathrm{r}_{\text {_ ground }}$ - reflectance factor of the ground vegetation in the given direction
S'/Q - direct to total ration of incoming radiation
rcr1 - single scattering reflectance of tree layer
rgr1 - the contribution of ground vegetation and soil in the single-scattering reflectance
rdif - diffuse component of canopy reflectance
refl. $=\mathrm{rcr} 1+\operatorname{rgr} 1+\mathrm{rdif}$

D Description of the subroutines

D. 1 Subroutines of general use

D.1.1 Function func

Function: In the direct mode the function func organizes the data exchange between subroutines and the main program.
In the inverse mode the function func checks that the model parameters are in the allowed range, organizes the data exchange between subroutines and the main program, and computes the merit function.

D.1.2 Subroutines iterats, rtsafe and funcd

Function: To compute the Fisher's grouping index $G I_{j}$, Eq. (10) from the given structure parameter $c_{j}\left(\theta_{1}\right)$.

Description: The Newton-Raphson method is used, Press et al. (1992), Algorithm 9.4.

D.1.3 Subroutines cubell, cubcirc and gauleg

Function: Provide quadrature (cubature) knots and weigths to numerical integrations.

D. 2 Structure modules

D.2. 1 Subroutine strmean

Function: Computes the mean values of structure parameters.

D.2.2 Subroutine hetk8s

Function: Coordinates the calculation of free lines of sight in Sun and view directions.

D.2.3 Subroutine enel

Function: Integrates the bidirectional probability $p_{00 j}$, over the whole tree crown, Eq. (3), and computes the probability to see the sunlight trunk.
Description: The volume integral $\iint_{V_{j}} p_{00 j}\left(x, y, z ; r_{1}, r_{2}\right) d x d y d z$ is calculated using a cubature for a sphere (ellipsoid) or cubature for a circle and Gauss-Legendre quadrature in respect of the z-coordinate for a cone+cylinder.

D.2.4 Subroutine bck3

Function: Computes the bidirectional gap probability $p_{o o j}$, Eq. (4).

D.2.5 Subroutine spooi

Function: Computes the between-crown gap probability p_{2}, Eq. (4).
Description: The overlapping of crown projections in Sun and view directions $S_{c j}()$ is calculated so that the crown projections S_{1} and S_{2} in Sun and view directions, respectively, are substituted with circles of the same area. Centers of the circles are halfway between the projections of the base and the top of a crown, see Fig. 2 (p. 7).

D.2.6 Subroutines rlips and rkoon

Function: Subroutines rlips and rkoon compute the distance from the given point $M(x, y, z)$ to the perimeter of the ellipsoid or cone+cylinder, respectively, in the given direction (θ, φ).

D.2.7 Subroutines pi11u, pi11d, pi22u and pi22d

Function: Subroutines pillu, pilld, pi22u and pi22d compute projections of the crown part above (pillu, pi22u) and below (pilld, pi22d) the given level z.

D.2.8 Subroutine scone

Function: Computes the projection area of a cone/frustum of a cone for a given direction.

D.2.9 Subroutine stem

Function: Computes the projection area of a stem.

D. 3 Optics modules

D.3.1 Subroutine optmean

Function: Computes the mean and effective values of optical parameters.

D.3.2 Subroutine aground

Function: Computes the directional-hemispherical reflectance rsdgrou and albedo (hemisphericalhemispherical reflectance) rddgrou of ground vegetation.

Description: The double integral over hemisphere which is needed for the hemisphericalhemispherical reflectance of ground vegetation is substituted by an integral over polar angle at the azimuth $\varphi=90^{\circ}$. The integral is calculated with an Gaussian quadrature.

D.3.3 Subroutine het48o

Function: Computes radiances down and up, and transmittance of the tree layer.

D.3.4 Subroutine hetk8o

Function: Sums together radiance of all tree classes.

D.3.5 Subroutine bgrdd

Function: Computes the downward radiance of diffuse fluxes below the tree canopy.
Description: Diffuse fluxes are computed in two-stream approximation (Bunnik, 1978; Kuusk, 2001).

D.3.6 Subroutine diffor

Function: Computes diffuse fluxes of multiple scattering and of scattered diffuse sky radiation.
Description: Diffuse fluxes are computed in two-stream approximation (Bunnik, 1978; Kuusk, 2001).

D. 4 Reflectance of ground vegetation

Subroutines
smcrm
biz2
gamma
gleaf
gmfres
soil
dif2
layer
rhocl
constitute the two-layer homogeneous canopy reflectance model ACRMf. The full description of algorithms is published by $\operatorname{Kuusk}(1994,1995 a, b, 2001)$.

D. 5 PROSPECT - the leaf optics model

Subroutines
prospect
tav
sl3aaf
constitute the leaf optics model by Jacquemoud and Baret (1990).

D. 6 LIBERTY - the leaf optics model

Subroutines
liberty
fresnel
constitute the leaf optics model by Dawson et al. (1998).

D. 7 Atmosphere radiative transfer model 6S

General description of the 6 S model is published by Vermote et al. (1997). The detail description of 6S modules is in (Vermote et al., 1994). For the calculation of incoming fluxes are used the modules
sixd
abstra
aeroso
atmref
chand
csalbr
discom
discre
dust
gauss
gqknots
interp
iso
kernel
ocea
oda550
odrayl
os
print_error
scatra
soot
specinterp
trunca
us62
vegeta
wate

D. 8 Optimization modules

The Powell's method (Press et al., 1992), Algorithm 10.5 is used for the minimization of the merit function Eq. (16). The corresponding subroutines are
powell
linmin
mnbrak
function brent

References

Bunnik, N.J.J., 1978. The Multispectral Reflectance of Shortwave Radiation by Agricultural Crops in Relation with their Morphological and Optical Properties, Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, 175 pp .

Dawson, T.P., Curran, P.J., and Plummer, S.E., 1998. LIBERTY - modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens. Environ. 65:50-60.

Jacquemoud, S., and Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 34:75-91.

Kuusk, A., 1994. A multispectral canopy reflectance model. Remote Sens. Environ. 50:75-82.
Kuusk, A., 1995a. A fast, invertible canopy reflectance model, textit Remote Sens. Environ. 51(3): 342-350.

Kuusk, A., 1995b. A Markov chain model of canopy reflectance. Agricult. Forest Meteorol. 76:221-236.

Kuusk, A., 2001. A two-layer canopy reflectance model. J.Q.S.R.T. 71:1-9.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1992. Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge, 963 pp.

Vermote, E., Tanré, D., Deuzé, J.L., Herman, M., and Morcrette, J.J., 1994. Second Simulation of the Satellite Signal in the Solar Spectrum (6S). User Guide Version 0, GSFC, NASA, 183 pp .

Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997. Second simulation of the satellite signal in the solar spectrum, 6S - An overview. IEEE Trans. Geosci. Remote Sens. 35(3):675-686.

